
DR
AF
T

Prepared for
Henry de Valence
Penumbra Labs, Inc

Prepared by
Syed Faraz Abrar
William Bowling
AvrahamWeinstock
Zellic

April 25, 2024

Penumbra IBC
Blockchain Security Assessment

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Penumbra IBC 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. False negative for Timeouts on ordered channels 11

3.2. Missing expiration check in UpgradeClient 13

3.3. Upgrade-path length hardcoded to two 15

3.4. Handshake statemachines too permissive when processing Acks 18

3.5. Zero out custom fields on client update 20

3.6. Chain ID parsing incorrectly accepts newlines 23

3.7. Missing check in ClientState::new 25

3.8. Frozen client height mismatches with ibc-go spec 27

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 2 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.9. Revision number not in state 28

3.10. Trailing hex digits in chain IDsmay be treated as revisions 30

3.11. Mismatch in upper bound for TrustThreshold 32

4. Discussion 34

4.1. Impact of provable store divergences not currently used in proofs 35

4.2. ICS specification inconsistencies 35

5. ThreatModel 35

6. Assessment Results 47

6.1. Disclaimer 48

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 3 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 4 of 48

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Penumbra Labs, Inc fromMarch 4th to April 17th, 2024.
During this engagement, Zellic reviewed Penumbra IBC's code for security vulnerabilities, design
issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Does penumbra-ibc implement the ICS-{002,003,004,007} protocols consistently with
ibc-go andwith the specification?

• Does penumbra-ibc correctly make use of ICS-023 vector commitments?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• The security of the implementation of the underlying cryptographic primitives, including
ics23 vector commitments

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Penumbra IBC crates, we discovered 11 findings. No critical
issues were found. Two findings were of high impact, four were of medium impact, one was of low
impact, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Penumbra Labs,
Inc's benefit in the Discussion section (4. ↗) at the end of the document.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 5 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 2

■ Medium 4

■ Low 1

■ Informational 4

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 6 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

2. Introduction 2.1. About Penumbra IBC

Penumbra Labs, Inc contributed the following description of Penumbra IBC:

Penumbra is a fully private proof-of-stake network and decentralized exchange.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the crates.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 7 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or
are not directly related to the scoped crates itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 8 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

2.3. Scope

The engagement involved a review of the following targets:

Penumbra IBC Crates

Repository https://github.com/penumbra-zone/penumbra ↗

Version penumbra: c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77

Program crates/core/component/ibc/src/*

Type Rust

Platform Cosmos-compatible

2.4. Project Overview

Zellic was contracted to perform a security assessment with three consultants for a total of 6.5
person-weeks. The assessment was conducted over the course of six calendar weeks.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 9 of 48

https://github.com/penumbra-zone/penumbra

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Syed Faraz Abrar
Engineer
faith@zellic.io ↗

William Bowling
Engineer
vakzz@zellic.io ↗

AvrahamWeinstock
Engineer
avi@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

March 4, 2024 Start of primary review period

April 17, 2024 End of primary review period

TBD Closing call

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 10 of 48

mailto:chad@zellic.io
mailto:faith@zellic.io
mailto:vakzz@zellic.io
mailto:avi@zellic.io

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3. Detailed Findings 3.1. False negative for Timeouts on ordered channels

Target crates/core/component/ibc

Category CodingMistakes Severity High

Likelihood High Impact High

Description

When handling MsgTimeout on ordered channels, penumbra-ibc uses != on sequence numbers
here ↗, so it will only accept proof that themost recent packet timed out.

if channel.ordering == ChannelOrder::Ordered {
// ordered channel: check that packet has not been received
if self.next_seq_recv_on_b != self.packet.sequence {

anyhow::bail!("packet sequence number does not match");
}

// in the case of a timed-out ordered packet, the counterparty should have
// committed the next sequence number to their state
state

.verify_packet_timeout_proof::<HI>(&connection, self)

.await

.context("failed to verify packet timeout proof")?;
} else {

Thecorrespondingcheck inibc-gohere ↗uses>, so itwill acceptevidenceofanypastpackethaving
timed out.

switch channel.Ordering {
case types.ORDERED:

// check that packet has not been received
if nextSequenceRecv > packet.GetSequence() {

return errorsmod.Wrapf(
types.ErrPacketReceived,
"packet already received, next sequence receive > packet sequence

(%d > %d)", nextSequenceRecv, packet.GetSequence(),
)

}

// check that the recv sequence is as claimed
err = k.connectionKeeper.VerifyNextSequenceRecv(

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 11 of 48

https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/msg_handler/timeout.rs#L86
https://github.com/cosmos/ibc-go/blob/1c4b41fa8fccf2ca54c769d4d3a90ec423768a98/modules/core/04-channel/keeper/timeout.go#L97

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

ctx, connectionEnd, proofHeight, proof,
packet.GetDestPort(), packet.GetDestChannel(), nextSequenceRecv,

)

Impact

If other implementations that are tested against ibc-go send MsgTimeout for a packet other than
the latest when multiple in-flight packets time out over an ordered channel, penumbra-ibc will not
acknowledge those, resulting in the timed-out channel not being closed (potentially locking ICS-20
escrowed funds, though thismight be fixable bymanually sending a MsgTimeout for the latest appli-
cable packet on that channel).

Recommendations

Enforce that the packet's sequence number is less than or equal to the current expected sequence
number when handling a time-out.

// ordered channel: check that packet has not been received
- if self.next_seq_recv_on_b != self.packet.sequence {
+ if self.next_seq_recv_on_b > self.packet.sequence {

anyhow::bail!("packet sequence number does not match");
}

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
269ab197 ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 12 of 48

https://github.com/penumbra-zone/penumbra/commit/269ab19779245262fb57ac0cb04e44184401ac81

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.2. Missing expiration check in UpgradeClient

Target src/component/msg_handler/upgrade_client.rs

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The handling of UpgradeClient by ibc-go checks both that the client is not frozen and not expired.
The handling of UpgradeClient by penumbra-ibc only checks that the client is not frozen.

The UpgradeClient function calls ↗ GetClientStatus.

func (k Keeper) UpgradeClient(
ctx sdk.Context,
clientID string,
upgradedClient, upgradedConsState, upgradeClientProof,
upgradeConsensusStateProof []byte,

) error {
if status := k.GetClientStatus(ctx, clientID); status != exported.Active {

return errorsmod.Wrapf(types.ErrClientNotActive, "cannot upgrade
client (%s) with status %s", clientID, status)
}
// ...

The GetClientStatus function calls ↗ ClientState.Status.

func (k Keeper) GetClientStatus(ctx sdk.Context, clientID string)
exported.Status {
// ...
return clientModule.Status(ctx, clientID)

}

The ClientState.Status function includes ↗ a check for expiration.

func (cs ClientState) Status(
ctx sdk.Context,
clientStore storetypes.KVStore,
cdc codec.BinaryCodec,

) exported.Status {

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 13 of 48

https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/core/02-client/keeper/client.go#L130
https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/core/02-client/keeper/keeper.go#L482
https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/light-clients/07-tendermint/client_state.go#L96

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

if !cs.FrozenHeight.IsZero() {
return exported.Frozen

}

// get latest consensus state from clientStore to check for expiry
consState, found := GetConsensusState(clientStore, cdc, cs.LatestHeight)
if !found {

// if the client state does not have an associated consensus state for
its latest height

// then it must be expired
return exported.Expired

}

if cs.IsExpired(consState.Timestamp, ctx.BlockTime()) {
return exported.Expired

}

return exported.Active
}

The verify_client_upgrade_proof function only checks ↗ if the client is frozen.

// check if the client is frozen
if trusted_client_state.is_frozen() {

anyhow::bail!("client is frozen");
}

Impact

This allows a chain to use an UpgradeClientmessage to re-activate an expired client state.

Recommendations

Check that the trusted client state is nonexpired in ClientUpgradeProofVeri-
fier::verify_client_upgrade_proof.

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
9f4abd0e ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 14 of 48

https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/proof_verification.rs#L136
https://github.com/penumbra-zone/penumbra/commit/9f4abd0ea733ec2e2c5960791ab8ba0337f1a26d

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.3. Upgrade-path length hardcoded to two

Target src/component/proof_verification.rs

Category CodingMistakes Severity High

Likelihood Medium Impact High

Description

Whereas ibc-go uses all but the last element of UpgradePath for verifying the client and consensus
state proofs when processing an UpgradeClient message, penumbra-ibc only uses the first ele-
ment of upgrade_path, which is equivalent to an assumption that the path length is always two.

The ibc-go library uses ↗ constructUpgradeClientMerklePath and constructUpgradeCon-
sStateMerklePath to construct paths for theMerkle proofs.

// Verify client proof
bz, err := cdc.MarshalInterface(tmUpgradeClient.ZeroCustomFields())
if err != nil {

return errorsmod.Wrapf(clienttypes.ErrInvalidClient, "could not marshal
client state: %v", err)

}
// construct clientState Merkle path
upgradeClientPath := constructUpgradeClientMerklePath(cs.UpgradePath,

lastHeight)
if err := merkleProofClient.VerifyMembership(cs.ProofSpecs,

consState.GetRoot(), upgradeClientPath, bz); err != nil {
return errorsmod.Wrapf(err, "client state proof failed. Path: %s",
upgradeClientPath.GetKeyPath())

}

// Verify consensus state proof
bz, err = cdc.MarshalInterface(upgradedConsState)
if err != nil {

return errorsmod.Wrapf(clienttypes.ErrInvalidConsensus, "could not marshal
consensus state: %v", err)

}
// construct consensus state Merkle path
upgradeConsStatePath := constructUpgradeConsStateMerklePath(cs.UpgradePath,

lastHeight)
if err := merkleProofConsState.VerifyMembership(cs.ProofSpecs,

consState.GetRoot(), upgradeConsStatePath, bz); err != nil {
return errorsmod.Wrapf(err, "consensus state proof failed. Path: %s",

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 15 of 48

https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/light-clients/07-tendermint/upgrade.go#L73-L93

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

upgradeConsStatePath.GetKeyPath())
}

The constructUpgradeClientMerklePath function uses ↗ all but the last element of upgradePath
as a prefix of clientPath.

// construct MerklePath for the committed client from upgradePath
func constructUpgradeClientMerklePath(upgradePath []string, lastHeight

exported.Height) commitmenttypes.MerklePath {
// copy all elements from upgradePath except final element
clientPath := make([]string, len(upgradePath)-1)
copy(clientPath, upgradePath)

// append lastHeight and `upgradedClient` to last key of upgradePath and
use as lastKey of clientPath
// this will create the IAVL key that is used to store client in upgrade
store
lastKey := upgradePath[len(upgradePath)-1]
appendedKey := fmt.Sprintf("%s/%d/%s", lastKey,
lastHeight.GetRevisionHeight(), upgradetypes.KeyUpgradedClient)

clientPath = append(clientPath, appendedKey)
return commitmenttypes.NewMerklePath(clientPath...)

}

The verify_client_upgrade_proof function only uses ↗ upgrade_path[0] in up-
grade_path_prefix.

let upgrade_path_prefix =
MerklePrefix::try_from(upgrade_path[0].clone().into_bytes())
.map_err(|_| {

anyhow::anyhow!("couldn't create commitment prefix from client upgrade
path")
})?;

// check if the client is frozen
if trusted_client_state.is_frozen() {

anyhow::bail!("client is frozen");
}

// get the stored consensus state for the counterparty
let trusted_consensus_state = self

.get_verified_consensus_state(&trusted_client_state.latest_height(),
client_id)
.await?;

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 16 of 48

https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/light-clients/07-tendermint/upgrade.go#L126-L139
https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/proof_verification.rs#L130-L154

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

verify_merkle_proof(
&trusted_client_state.proof_specs,
&upgrade_path_prefix,
client_state_proof,
&trusted_consensus_state.root,
ClientUpgradePath::UpgradedClientState(

trusted_client_state.latest_height().revision_height(),
),
upgraded_tm_client_state.encode_to_vec(),

)?;

Impact

If the upgrade path is ever longer than two, a malicious chain may be able to include different client
and consensus state proofs at different paths, upgrading its state to different values on penumbra-
ibc and ibc-go chains.

Recommendations

Use all but the last element of upgrade_path instead of upgrade_path[0] in ClientUpgrade-
ProofVerifier::verify_client_upgrade_proof.

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
3c38d2a3 ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 17 of 48

https://github.com/penumbra-zone/penumbra/commit/3c38d2a39def09de790327da559a12ac38f94b58

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.4. Handshake statemachines too permissive when processing Acks

Target crates/core/component/ibc

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

Both ConnectionOpenAck and ChannelOpenAck permit the party processing the message to have
their channel in State::TryOpen in addition to State::Init.

The verify_previous_connection function permits ↗ State::TryOpen in ConnectionOpenAck.

let state_is_consistent = connection.state_matches(&State::Init)
&& connection.versions.contains(&msg.version)
|| connection.state_matches(&State::TryOpen)

&& connection.versions.get(0).eq(&Some(&msg.version));

The channel_state_is_correct function permits ↗ ChannelState::TryOpen in ChannelOpenAck.

fn channel_state_is_correct(channel: &ChannelEnd) -> anyhow::Result<()> {
if channel.state == ChannelState::Init || channel.state
== ChannelState::TryOpen {

Ok(())
} else {

Err(anyhow::anyhow!("channel is not in the correct state"))
}

}

The ibc-go library requires the connections/channels to be strictly in state INIT.

The ConnOpenAck function enforces ↗ the connection's state to be types.INIT.

// verify the previously set connection state
if connection.State != types.INIT {

return errorsmod.Wrapf(
types.ErrInvalidConnectionState,
"connection state is not INIT (got %s)", connection.State.String(),

)
}

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 18 of 48

https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/msg_handler/connection_open_ack.rs#L236
https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/msg_handler/channel_open_ack.rs#L113
https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/core/03-connection/keeper/handshake.go#L187

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

The ChanOpenAck function enforces ↗ the channel's state to be types.INIT.

if channel.State != types.INIT {
return errorsmod.Wrapf(types.ErrInvalidChannelState, "channel state should
be INIT (got %s)", channel.State.String())

}

Impact

It may be possible for a malicious chain to swap roles partway through the handshake (in the fol-
lowing, A is an attacker-controlled chain and B is a penumbra-ibc chain initiating a connection with
it):

• B sends ConnectionOpenInit to A; state is (Init, None).
• A sends ConnectionOpenTry to B; state is (Init, TryOpen).
• B sends ConnectionOpenAck to A; state would normally be in (Open, TryOpen), but A can
deviate here and store TryOpen, resulting in state (TryOpen, TryOpen).

• Adeviates from theprotocol andsendsConnectionOpenAck toB (insteadof sendingCon-
nectionOpenConfirm). If B is an ibc-gonode, B rejects this since it is in TRYOPEN state and
not INIT state, but on penumbra-ibc, this check succeeds. At this point, to pass the con-
nection -erkle proof check, A needs to prove that their channel is in TryOpen state, which
they can do if they deviated above. At this point, the client and consensus-state proofs
that B is processing refer to A's representation of B's state. If this step succeeds, (A, B)
are in state (TryOpen, Open).

• B sends ConnectionOpenConfirm to A (at this point the roles have reversed), and the re-
sulting state is (Open, Open).

This may result in not all relevant proofs being checked in both directions or IDs stored in B being
chosen by A.

Recommendations

Enforce that connection.state/channel.state are only in State::Init in MsgConnectionOpe-
nAck::try_execute/ChannelOpenAck::try_execute, respectively.

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
c4e51bc8 ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 19 of 48

https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/core/04-channel/keeper/handshake.go#L224
https://github.com/penumbra-zone/penumbra/commit/c4e51bc89abdc102ef4840ffa240602d63f1b85c

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.5. Zero out custom fields on client update

Target src/component/msg_handler/upgrade_client.rs

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

Whenaclientupgrade isperformed, theverify_client_upgrade_proof function iscalled toensure
the counterparty has committed the new client state:

let upgraded_client_state_tm =
TendermintClientState::try_from(self.client_state.clone())

.context("client state is not a Tendermint client state")?;
// [...snip...]
state

.verify_client_upgrade_proof(
&self.client_id,
&proof_client_state,
&proof_consensus_state,
upgraded_consensus_state_tm.clone(),
upgraded_client_state_tm.clone(),

)
.await?;

The corresponding check in ibc-go here ↗ used a zeroed-out client state to verify the proof:

// Verify client proof
bz, err := cdc.MarshalInterface(tmUpgradeClient.ZeroCustomFields())
if err != nil {

return errorsmod.Wrapf(clienttypes.ErrInvalidClient, "could not marshal
client state: %v", err)

}
// construct clientState Merkle path
upgradeClientPath := constructUpgradeClientMerklePath(cs.UpgradePath,

lastHeight)
if err := merkleProofClient.VerifyMembership(cs.ProofSpecs,

consState.GetRoot(), upgradeClientPath, bz); err != nil {
return errorsmod.Wrapf(err, "client state proof failed. Path: %s",
upgradeClientPath.GetKeyPath())

}

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 20 of 48

https://github.com/cosmos/ibc-go/blob/main/modules/light-clients/07-tendermint/upgrade.go#L74

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

It also uses the zeroed-out client state when committing the new client state here ↗:

// ScheduleIBCSoftwareUpgrade schedules an upgrade for the IBC client.
func (k Keeper) ScheduleIBCSoftwareUpgrade(ctx sdk.Context, plan

upgradetypes.Plan, upgradedClientState exported.ClientState) error {
// zero out any custom fields before setting
cs, ok := upgradedClientState.(*ibctm.ClientState)
if !ok {

return errorsmod.Wrapf(types.ErrInvalidClientType, "expected: %T, got:
%T", &ibctm.ClientState{}, upgradedClientState)
}

cs = cs.ZeroCustomFields()
bz, err := types.MarshalClientState(k.cdc, cs)
if err != nil {

return errorsmod.Wrap(err, "could not marshal UpgradedClientState")
}

if err := k.upgradeKeeper.ScheduleUpgrade(ctx, plan); err != nil {
return err

}

// sets the new upgraded client last height committed on this chain at
plan.Height,
// since the chain will panic at plan.Height and new chain will resume at
plan.Height
if err = k.upgradeKeeper.SetUpgradedClient(ctx, plan.Height, bz); err
!= nil {

return err
}

Impact

If the counterparty performing the update is using the ibc-go implementation, Penumbrawill fail to
verify the client upgrade proof as it will be different to the zeroed-out client state used by ibc-go,
resulting in a failed upgrade.

Recommendations

All customizable fields in the client state should be zeroed out before verifying the client upgrade
proof, as done in ibc-go:

func (cs ClientState) ZeroCustomFields() *ClientState {
// copy over all chain-specified fields

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 21 of 48

https://github.com/cosmos/ibc-go/blob/2555a7c504a904064d659e4c1a3a74000887f73d/modules/core/02-client/keeper/keeper.go#L552-L564

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

// and leave custom fields empty
return &ClientState{

ChainId: cs.ChainId,
UnbondingPeriod: cs.UnbondingPeriod,
LatestHeight: cs.LatestHeight,
ProofSpecs: cs.ProofSpecs,
UpgradePath: cs.UpgradePath,

}
}

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
1851fe04 ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 22 of 48

https://github.com/penumbra-zone/penumbra/commit/1851fe04d3863c9021c3cc5c83bc60d239760b62

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.6. Chain ID parsing incorrectly accepts newlines

Target crates/core/component/ibc

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

When parsing chain IDs, ibc-types uses amore lenient regex ↗ than ibc-go's regex ↗.

var IsRevisionFormat = regexp.MustCompile(`^.*[^\n-]-{1}[1-9][0-
9]*$`).MatchString

pub fn is_epoch_format(chain_id: &str) -> bool {
let re = safe_regex::regex!(br".*[^-]-[1-9][0-9]*");
re.is_match(chain_id.as_bytes())

}

For example, ibc-go will consider the chain ID \n-foo-1 to have revision number 0, whereas
penumbra-ibcwill consider it to have revision number 1.

Impact

This likely does not have any security impact, but it is a deviation from the specification and can po-
tentially lead to an issue in the future; see Discussion point 4.1. ↗.

Recommendations

Include a newline (and possibly anchors) in ibc-types's version of the regex.

pub fn is_epoch_format(chain_id: &str) -> bool {
- let re = safe_regex::regex!(br".*[^-]-[1-9][0-9]*");
+ let re = safe_regex::regex!(br"^.*[^\n-]-[1-9][0-9]*$");

re.is_match(chain_id.as_bytes())
}

The anchors are not strictly required since safe_regex::IsMatch::is_match checks if the whole
string matches, in contrast to Go's Regexp.MatchString, which checks if any substring matches;

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 23 of 48

https://github.com/penumbra-zone/ibc-types/blob/dac3bbff3b73fdf35c64dbbead1b712c801b561d/crates/ibc-types-core-connection/src/identifier.rs#L98C1-L101C6
https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/core/02-client/types/height.go#L23

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

the behavioral difference is in the lack of \n in the character class.

Remediation

TBD

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 24 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.7. Missing check in ClientState::new

Target ibc-types/crates/ibc-
types-lightclients-
tendermint/src/client_state.rs

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The ClientState::new function in ibc-types shares most of its checks with ibc-go's
ClientState.Validate but omits the check that chain_id is nonempty, and none of ChainId's
From/FromStr trait implementations contain this check. This will result in penumbra-ibc nodes
accepting chain IDs that ibc-go nodes will reject (though when referring to the chain ID "", it will
reserialize it as "-0", which ibc-gowill accept).

The ibc-go library checks ↗ that the chain ID is nonempty.

if strings.TrimSpace(cs.ChainId) == "" {
return errorsmod.Wrap(ErrInvalidChainID, "chain id cannot be empty string")

}

The ChainId::new function in ibc-types omits ↗ the corresponding check.

pub fn from_string(id: &str) -> Self {
let version = if Self::is_epoch_format(id) {

Self::chain_version(id)
} else {

0
};

Self {
id: id.to_string(),
version,

}
}

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 25 of 48

https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/light-clients/07-tendermint/client_state.go#L112-L114
https://github.com/penumbra-zone/ibc-types/blob/1cb04a71cb5baf3c6f5a43c696966d979d5a29fb/crates/ibc-types-core-connection/src/identifier.rs#L44-L55

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Impact

This likely does not have any security impact, but it is a deviation from the specification and can po-
tentially lead to an issue in the future; see Discussion point 4.1. ↗.

Recommendations

Use fallible conversions from String/&str to ChainId and reject the empty string.

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
73da5ee5 ↗

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 26 of 48

https://github.com/penumbra-zone/ibc-types/commit/73da5ee5d06b5f62c186b31ce37f7669edc8bbf2

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.8. Frozen client height mismatches with ibc-go spec

Target crates/core/component/ibc

Category CodingMistakes Severity Informational

Likelihood High Impact Informational

Description

Clients that are frozen are always frozen at a specific height. This height has a revision number of 0
and a revision height of 1. This can be seen in the IBC specifications here ↗ and in ibc-go here ↗.

Penumbra instead uses the current Tendermint block header's height as the frozen height, as seen
here ↗.

Impact

This likely does not have any security impact, but it is a deviation from the specification and can po-
tentially lead to an issue in the future; see Discussion point 4.1. ↗.

Recommendations

Use a revision number of 0 and height of 1 instead of the current Tendermint block header's height
for frozen clients.

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
9c463357 ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 27 of 48

https://github.com/cosmos/ibc/blob/33d936aeecd649f25d4e357c942fcb5e4dec96e3/spec/client/ics-007-tendermint-client/README.md?plain=1#L329
https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/light-clients/07-tendermint/misbehaviour.go#L19
https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/client.rs#L50
https://github.com/penumbra-zone/penumbra/commit/9c4633579d4bbe98cf236a09583c7e4665dee6d3

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.9. Revision number not in state

Target crates/core/component/ibc

Category CodingMistakes Severity Informational

Likelihood High Impact Informational

Description

In ibc-go, the revision number parsed from the chain ID as part of the processed height
is stored at "consensusStates/{height}/processedHeight"; in contrast, penumbra-
ibc hardcodes a 0 revision number in the processed height and stores it at "ibc/-
clients/{client_id}/processedHeights/{height}".

The GetHeight function ↗ in ibc-go parses the revision number from the chain ID.

func (h Header) GetHeight() exported.Height {
revision := clienttypes.ParseChainID(h.Header.ChainID)
return clienttypes.NewHeight(revision, uint64(h.Header.Height))

}

The UpdateState function ↗ calls setConsensusMetadata, which writes to "consen-
susStates/{height}/processedHeight".

func (cs ClientState) UpdateState(ctx sdk.Context, cdc codec.BinaryCodec,
clientStore storetypes.KVStore, clientMsg exported.ClientMessage)
[]exported.Height {
// ...
setConsensusMetadata(ctx, clientStore, header.GetHeight())
// ...

}

The put_verified_consensus_state function ↗ uses a hardcoded 0 revision number in the stored
processedHeight.

self.put(
state_key::client_processed_heights(&client_id, &height),
ibc_types::core::client::Height::new(0, current_height)?,

);

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 28 of 48

https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/light-clients/07-tendermint/header.go#L35-L38
https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/light-clients/07-tendermint/update.go#L162
https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/client.rs#L132

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Impact

This likely does not have any security impact, but it is a deviation from the specification and can po-
tentially lead to an issue in the future; see Discussion point 4.1. ↗.

Recommendations

Make the heights and paths used for put_verified_consensus_state consistent with setConsen-
susMetadata.

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
94b7b15c ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 29 of 48

https://github.com/penumbra-zone/penumbra/commit/94b7b15ca1e90bc0e2b7e8448b9501c3a1cbaf51

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.10. Trailing hex digits in chain IDsmay be treated as revisions

Target crates/core/component/ibc

Category CodingMistakes Severity Informational

Likelihood Low Impact Informational

Description

If preserve_chain_id is false when running pd testnet generate, the generated testnet will have
a name ending in 8 hex nybbles, which can be parsed as a decimal approximately 2.3% of the time
((1016)

8), whichmay be interpreted as a revision.

This is the pd executable ↗'s generation of hex testnet names:

let chain_id = match preserve_chain_id {
true =>
chain_id.unwrap_or_else(|| env!("PD_LATEST_TESTNET_NAME").to_string()),
false => {

// If preserve_chain_id is false, we append a random suffix to avoid
collisions

let randomizer = OsRng.gen::<u32>();
let chain_id =

chain_id.unwrap_or_else(||
env!("PD_LATEST_TESTNET_NAME").to_string());

format!("{}-{}", chain_id, hex::encode(randomizer.to_le_bytes()))
}

};

Impact

This likely does not have any security impact, but it is a deviation from the specification and can po-
tentially lead to an issue in the future; see Discussion point 4.1. ↗.

Recommendations

Either append a -0 to the chain ID or encode the random value as decimal (so that it is consistently
treated like a revision).

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 30 of 48

https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/bin/pd/src/main.rs#L426-L429

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
df502ebc ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 31 of 48

https://github.com/penumbra-zone/penumbra/commit/df502ebc402913dfb2198658e4066bb39d0ec493

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

3.11. Mismatch in upper bound for TrustThreshold

Target src/component/ics02_validation.rs

Category CodingMistakes Severity Informational

Likelihood Medium Impact Informational

Description

Tendermint'sTrustThresholdFraction::newenforces that a trust threshold is in the interval
[
1
3 , 1

]
.

Also, TrustThresholdFraction::new is called from ibc-types's ClientState::new, which shares
most of its checks with ibc-go's ClientState.Validate, and the corresponding check there is to
cometbft's light.ValidateTrustLevel, which also uses the interval

[
1
3 , 1

]
.

Moreover, penumbra-ibc contains an additional check, validate_trust_threshold, which
enforces that the trust threshold used when validating the counterparty's representation of
Penumbra's state is in ConnectionOpenTry and ConnectionOpenAck is in the interval

[
1
3 , 1

)
(i.e., strictly less than one), which is more restrictive. The corresponding check in ibc-
go's ConsensusHost.ValidateSelfClient uses the same light.ValidateTrustLevel as
ClientState.Validate.

The TrustThresholdFraction::new function ↗'s enforcement of the interval
[
1
3 , 1

]
:

if numerator > denominator {
return Err(Error::trust_threshold_too_large());

}
if denominator == 0 {

return Err(Error::undefined_trust_threshold());
}
if 3 * numerator < denominator {

return Err(Error::trust_threshold_too_small());
}

The cometbft library ↗'s enforcement of the interval
[
1
3 , 1

]
:

func ValidateTrustLevel(lvl cmtmath.Fraction) error {
if lvl.Numerator*3 < lvl.Denominator || // < 1/3

lvl.Numerator > lvl.Denominator || // > 1
lvl.Denominator == 0 {
return fmt.Errorf("trustLevel must be within [1/3, 1], given %v", lvl)

}
return nil

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 32 of 48

https://github.com/informalsystems/tendermint-rs/blob/c45f593e06eb404259bdd14c4d90c62f73943381/tendermint/src/trust_threshold.rs#L53-L67
https://github.com/cometbft/cometbft/blob/fe45483be36ebfea7e172a3ad949e8fe09a8fd95/light/verifier.go#L197-L204

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

}

This is the validate_trust_threshold function ↗'s enforcement of the interval
[
1
3 , 1

)
:

fn validate_trust_threshold(trust_threshold: TrustThreshold) ->
anyhow::Result<()> {
if trust_threshold.denominator() == 0 {

anyhow::bail!("trust threshold denominator cannot be zero");
}

if trust_threshold.numerator() * 3 < trust_threshold.denominator() {
anyhow::bail!("trust threshold must be greater than 1/3");

}

if trust_threshold.numerator() >= trust_threshold.denominator() {
anyhow::bail!("trust threshold must be strictly less than 1");

}

Ok(())
}

The ibc-go library ↗ uses cometbft's ValidateTrustLevel in ValidateSelfClient.

if err := light.ValidateTrustLevel(tmClient.TrustLevel.ToTendermint()); err !=
nil {
return errorsmod.Wrapf(clienttypes.ErrInvalidClient, "trust-level invalid:
%v", err)

}

Impact

If a penumbra-ibc node were configured to use a trust threshold of 1 (which is technically valid, but
has liveness issues and may not provide additional security over a threshold of 2

3), it would incor-
rectly not be able to open ICS-003 connections, since it would fail to recognize its own state on the
counterparty's chain.

Recommendations

The validate_trust_threshold function should permit a trust_threshold of 1.

- if trust_threshold.numerator() >= trust_threshold.denominator() {
+ if trust_threshold.numerator() > trust_threshold.denominator() {

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 33 of 48

https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/ics02_validation.rs#L146-L160
https://github.com/cosmos/ibc-go/blob/b4651560ec3f363aa705424397b1e164c5594a1e/modules/light-clients/07-tendermint/consensus_host.go#L105-L107

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

- anyhow::bail!("trust threshold must be strictly less than 1");
+ anyhow::bail!("trust threshold must be less than or equal to 1");

}

Remediation

This issue has been acknowledged by Penumbra Labs, Inc, and a fix was implemented in commit
5e271118 ↗.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 34 of 48

https://github.com/penumbra-zone/penumbra/commit/5e271118d4bf4016d3540eb47c9d6668af2845ac

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Impact of provable store divergences not currently used in proofs

Several findings involve penumbra-ibc storing a different state than ibc-go does (either storing a
non–byte-identical state at the same keys, storing values at different keys, or both).

While it does not seem like these can be amplified into a behavioral difference with the current im-
plementations, this is a potential forwards-compatibility hazard if Merkle proofs of values at those
pathswill beneededby futureprotocolsor if anyexistingprotocol candependonMerkleproofswith
arbitrary keys.

4.2. ICS specification inconsistencies

There are a fewplaceswhere the ICS specifications do notmatch either penumbra-ibc or ibc-go or
are internally inconsistent. These are to be considered bugs in the specification itself, not bugs in
penumbra-ibc or ibc-go.

ICS-007 specification omits the consensus-stateMerkle proof

ICS-007's upgrade procedure ↗only checks that the newclient state is included in theprevious con-
sensusstate, not that thenewconsensusstate is included. Incontrast,penumbra-ibc ↗andibc-go ↗
check both proofs.

ICS-007 specification is more permissive than implementations regarding up-
grading frozen clients

Whenupgrading, ICS-007 permits ↗ a client frozenwith a nonsentinel value to beupgraded if it were
frozen in the future; neither penumbra-ibc ↗ nor ibc-go ↗ permit frozen clients to be upgraded at all.

Internal inconsistency in ICS-004

ICS-004's recvPacket function references verifyPacketData ↗, which seems to be an irrelevant
reference to ICS-010. It seems likely that the intended reference is to ICS-003's verifyPacketCom-
mitment, which is defined but unreferenced by the rest of the specification.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 35 of 48

https://github.com/cosmos/ibc/blob/33d936aeecd649f25d4e357c942fcb5e4dec96e3/spec/client/ics-007-tendermint-client/README.md?plain=1#L363
https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/proof_verification.rs#L145-L165
https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/light-clients/07-tendermint/upgrade.go#L73-L93
https://github.com/cosmos/ibc/blob/33d936aeecd649f25d4e357c942fcb5e4dec96e3/spec/client/ics-007-tendermint-client/README.md?plain=1#L355-L356
https://github.com/penumbra-zone/penumbra/blob/c462e9a6cc86a37d42a9d75f1ab9ceb0e3789f77/crates/core/component/ibc/src/component/proof_verification.rs#L136-L138
https://github.com/cosmos/ibc-go/blob/3fbd2dfb5e42dc1cc2c8bb7bb0ff654f13874760/modules/core/02-client/keeper/client.go#L130
https://github.com/cosmos/ibc/blob/33d936aeecd649f25d4e357c942fcb5e4dec96e3/spec/core/ics-004-channel-and-packet-semantics/README.md?plain=1#L855

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in the crates and created a written threat model for some critical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

Action: IbcRelay

The IbcRelay action encapsulates IBCmessages that manage clients, channels, and connections.

Message: CreateClient

The CreateClient messages create a representation of a remote Tendermint light client with a
specified initial consensus state; client_statemust deserialize to a ClientState value, and con-
sensus_statemust deserialize to a ConsensusState value. The ClientState fields are checked to
satisfy additional constraints (e.g., that the durations are nonzero, without which updates would be
rejected, and that the trust level is between 1

3 and 1, without which updates would be unsound).

pub struct MsgCreateClient {
pub client_state: Any,
pub consensus_state: Any,
pub signer: String,

}

pub struct ClientState {
pub chain_id: ChainId,
pub trust_level: TrustThreshold,
pub trusting_period: Duration,
pub unbonding_period: Duration,
pub max_clock_drift: Duration,
pub latest_height: Height,
pub proof_specs: Vec<ProofSpec>,
pub upgrade_path: Vec<String>,
pub allow_update: AllowUpdate,
pub frozen_height: Option<Height>,

}

pub struct ConsensusState {
pub timestamp: Time,
pub root: MerkleRoot,
pub next_validators_hash: Hash,

}

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 36 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Message: UpdateClient

The UpdateClient messages update the state of an existing remote Tendermint light client;
client_messagemust deserialize to a Tendermint Header, and the header must be valid according
to the previous client and consensus states.

pub struct MsgUpdateClient {
pub client_id: ClientId,
pub client_message: Any,
pub signer: String,

}

pub struct Header {
pub signed_header: SignedHeader, // contains the commitment root
pub validator_set: ValidatorSet, // the validator set that signed Header
pub trusted_height: Height, // the height of a trusted header seen by
client less than or equal to Header
// TODO(thane): Rename this to trusted_next_validator_set?
pub trusted_validator_set: ValidatorSet, // the last trusted validator set
at trusted height

}

Message: UpgradeClient

The UpgradeClientmessages upgrade an existing remote Tendermint light client to a new version;
client_statemust deserialize to a ClientState value, and consensus_statemust deserialize to
a ConsensusState value, as in CreateClient. The client must have opted into being upgradable by
setting an upgrade_path in CreateClient, which is used as a path into the Merkle proofs to verify
that the new replacement client_state and consensus_statewere committed to by the most re-
cently validated consensus state.

pub struct MsgUpgradeClient {
// client unique identifier
pub client_id: ClientId,
// Upgraded client state
pub client_state: Any,
// Upgraded consensus state, only contains enough information
// to serve as a basis of trust in update logic
pub consensus_state: Any,
// proof that old chain committed to new client
pub proof_upgrade_client: RawMerkleProof,
// proof that old chain committed to new consensus state
pub proof_upgrade_consensus_state: RawMerkleProof,
// signer address

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 37 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

pub signer: String,
}

Message: SubmitMisbehavior

The SubmitMisbehaviourmessages allow a node that notices certain forms of misbehavior (either
producing twoblocks for the same timestampor including twoblocks out of order) on a remote Ten-
dermint client to alert other nodes, freezing their representations of the misbehaving node to pre-
vent further divergence.

pub struct MsgSubmitMisbehaviour {
/// client unique identifier
pub client_id: ClientId,
/// misbehaviour used for freezing the light client
pub misbehaviour: ProtoAny,
/// signer address
pub signer: String,

}

pub struct Misbehaviour {
pub client_id: ClientId,
pub header1: Header,
pub header2: Header,

}

Message: ConnectionOpenInit

Messages ConnectionOpenInit, ConnectionOpenTry, ConnectionOpenAck, and ConnectionOpen-
Confirm form a handshake for establishing a bidirectional ICS-003 connection between two chains
(henceforth A and B), such that each chain represents the other as a client and that each has knowl-
edge of the corresponding client and connection IDs.

TheConnectionOpenInitassigns thenext availableconnection IDonA for the (A,B) connectionpair
as thepart of thepath inA's state to store the ConnectionEnd (with State::Init) for the subsequent
messages to reference in proofs.

pub struct MsgConnectionOpenInit {
/// ClientId on chain A that the connection is being opened for
pub client_id_on_a: ClientId,
pub counterparty: Counterparty,
pub version: Option<Version>,
pub delay_period: Duration,
pub signer: String,

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 38 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

}

pub struct ConnectionEnd {
pub state: State,
pub client_id: ClientId,
pub counterparty: Counterparty,
pub versions: Vec<Version>,
pub delay_period: Duration,

}

pub enum State {
Uninitialized = 0isize,
Init = 1isize,
TryOpen = 2isize,
Open = 3isize,

}

pub struct Counterparty {
pub client_id: ClientId,
pub connection_id: Option<ConnectionId>,
pub prefix: MerklePrefix,

}

Message: ConnectionOpenTry

The ConnectionOpenTrymessage has B verify that the following are committed to in A's state:

• The ConnectionEnd constructed from the data in the ConnectionOpenTrymessage (with
State::Init) is at the corresponding path based on A's connection ID for (A, B).

• B's client state is committed to by A at the corresponding path for B's client ID on A.
• B's consensus state is committed to by A at the corresponding path for B's client ID onA.

B allocates its own connection ID for (A, B) and stores the corresponding ChannelEnd (with
State::TryOpen) in its state under that ID, with a compatible version selected from A's declared
supported versions.

pub struct MsgConnectionOpenTry {
/// ClientId on B that the connection is being opened for
pub client_id_on_b: ClientId,
/// ClientState of client tracking chain B on chain A
pub client_state_of_b_on_a: Any,
/// ClientId, ConnectionId and prefix of chain A
pub counterparty: Counterparty,
/// Versions supported by chain A
pub versions_on_a: Vec<Version>,

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 39 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

/// proof of ConnectionEnd stored on Chain A during ConnOpenInit
pub proof_conn_end_on_a: MerkleProof,
/// proof that chain A has stored ClientState of chain B on its client
pub proof_client_state_of_b_on_a: MerkleProof,
/// proof that chain A has stored ConsensusState of chain B on its client
pub proof_consensus_state_of_b_on_a: MerkleProof,
/// Height at which all proofs in this message were taken
pub proofs_height_on_a: Height,
/// height of latest header of chain A that updated the client on chain B
pub consensus_height_of_b_on_a: Height,
pub delay_period: Duration,
pub signer: String,
pub proof_consensus_state_of_b: Option<MerkleProof>,

#[deprecated(since = "0.22.0")]
/// Only kept here for proper conversion to/from the raw type
pub previous_connection_id: String,

}

Message: ConnectionOpenAck

The ConnectionOpenAckmessage has A check that it has a ConnectionEnd with B in State::Init
and that the version B chose is one of its supported versions.

A then verifies that the following are committed to in B's state:

• The ConnectionEnd constructed from the data in the ConnectionOpenTrymessage (with
State::TryOpen)is at the corresponding path based on B's connection ID for (A, B).

• A's client state is committed to by B at the corresponding path for A's client ID on B.
• A's consensus state is committed to by B at the corresponding path for A's client ID on B.

A then updates its ConnectionEnd to State::Open or State::TryOpen (see Finding 3.4. ↗), with the
agreed-on version and with B's connection ID for (A, B) that it committed to (replacing the one pro-
vided in ConnectionOpenInit's counterparty).

pub struct MsgConnectionOpenAck {
/// ConnectionId that chain A has chosen for it's ConnectionEnd
pub conn_id_on_a: ConnectionId,
/// ConnectionId that chain B has chosen for it's ConnectionEnd
pub conn_id_on_b: ConnectionId,
/// ClientState of client tracking chain A on chain B
pub client_state_of_a_on_b: Any,
/// proof of ConnectionEnd stored on Chain B during ConnOpenTry
pub proof_conn_end_on_b: MerkleProof,
/// proof of ClientState tracking chain A on chain B

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 40 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

pub proof_client_state_of_a_on_b: MerkleProof,
/// proof that chain B has stored ConsensusState of chain A on its client
pub proof_consensus_state_of_a_on_b: MerkleProof,
/// Height at which all proofs in this message were taken
pub proofs_height_on_b: Height,
/// height of latest header of chain A that updated the client on chain B
pub consensus_height_of_a_on_b: Height,
/// optional proof of the consensus state of the host chain, see:
<https://github.com/cosmos/ibc/pull/839>
host_consensus_state_proof: Option<MerkleProof>,
pub version: Version,
pub signer: String,

}

Message: ConnectionOpenConfirm

The ConnectionOpenConfirm message has B check that its ConnectionEnd is in State::TryOpen,
then verifies that A has committed to a ConnectionEnd in State::Openwith the corresponding data
in theConnectionOpenConfirmmessage, and thenupdates itsConnectionEnd toState::Open. This
concludes the handshake.

pub struct MsgConnectionOpenConfirm {
/// ConnectionId that chain B has chosen for it's ConnectionEnd
pub conn_id_on_b: ConnectionId,
/// proof of ConnectionEnd stored on Chain A during ConnOpenInit
pub proof_conn_end_on_a: MerkleProof,
/// Height at which `proof_conn_end_on_a` in this message was taken
pub proof_height_on_a: Height,
pub signer: String,

}

Message: ChannelOpenInit

Messages ChannelOpenInit, ChannelOpenTry, ChannelOpenAck, and ChannelOpenConfirm form a
handshake for establishingbidirectional ICS-004data channels betweenchains that are transitively
connected by ICS-003 connections. Currently, penumbra-ibc only supports channels with exactly
oneconnection. In otherwords, for a channel to beestablishedbetweenAandB, theremust be adi-
rect connectionbetweenAandB rather than connectionsbetween (A,C) and (C, B). The AppHandler
trait additionally allows application-specific checks to be added to each step of the handshake if the
port ID is specified as "transfer" (e.g., penumbra-shielded-pool and astria-sequencer's ICS-020
implementations enforce that their channels are unordered through these callbacks).

ChannelOpenInit has A check

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 41 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

• that the connection to be established is exactly one hop
• that the specified (channel_id, port_id_on_a) is unused in A's state with the next avail-
able channel_id (this check ensures ChannelOpenInit is idempotent/immune to replay
attacks)

• that an (A, B) connection exists in A's state (but not necessarily in State::Open, to reduce
the number of round trips when establishing a connection and channel on that connec-
tion concurrently).

A then generates the next sequential channel ID, stores a ChannelEnd in State::Init in its state
under (channel_id, port_id_on_a), and initializes its {send,recv,ack} sequence numbers to 1.

pub struct MsgChannelOpenInit {
pub port_id_on_a: PortId,
pub connection_hops_on_a: Vec<ConnectionId>,
pub port_id_on_b: PortId,
pub ordering: Order,
pub signer: String,
/// Allow a relayer to specify a particular version by providing a
non-empty version string
pub version_proposal: Version,

}

pub struct ChannelEnd {
pub state: State,
pub ordering: Order,
pub remote: Counterparty,
pub connection_hops: Vec<ConnectionId>,
pub version: Version,

}

pub struct Counterparty {
pub port_id: PortId,
pub channel_id: Option<ChannelId>,

}

pub enum Order {
None = 0isize,
Unordered = 1isize,
Ordered = 2isize,

}

pub enum State {
Uninitialized = 0isize,
Init = 1isize,
TryOpen = 2isize,
Open = 3isize,

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 42 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Closed = 4isize,
}

Message: ChannelOpenTry

The ChannelOpenTrymessage has B check

• that the connection to be established is exactly one hop
• that A has committed a ChannelEnd in State::Initwith the provided ordering and a sin-
gle connection to B

B does not check that the port_id_on_b specified by A is free in B's state, which is fine since the
ChannelEnds are stored under a (ChannelId, PortId) pair, and the ChannelId is fresh.

B then generates its next free channel ID, creates a ChannelEnd in State::TryOpen, stores it in its
state under the specified port ID, and initializes its {send,recv,ack} sequence numbers to 1.

pub struct MsgChannelOpenTry {
pub port_id_on_b: PortId,
pub connection_hops_on_b: Vec<ConnectionId>,
pub port_id_on_a: PortId,
pub chan_id_on_a: ChannelId,
pub version_supported_on_a: Version,
pub proof_chan_end_on_a: MerkleProof,
pub proof_height_on_a: Height,
pub ordering: Order,
pub signer: String,

#[deprecated(since = "0.22.0")]
/// Only kept here for proper conversion to/from the raw type
pub previous_channel_id: String,
#[deprecated(since = "0.22.0")]
/// Only kept here for proper conversion to/from the raw type
pub version_proposal: Version,

}

Message: ChannelOpenAck

The ChannelOpenAckmessage has A check

• that its ChannelEnd is in State::Init or State::TryOpen (see Finding 3.4. ↗)
• that its (A, B) ConnectionEnd is in State::Open
• that B has committed to a ChannelEnd in State::TryOpen with data consistent with the
expected new state

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 43 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

A then sets its ChannelEnd state to State::Open and updates the channel ID/version to match B's
state.

pub struct MsgChannelOpenAck {
pub port_id_on_a: PortId,
pub chan_id_on_a: ChannelId,
pub chan_id_on_b: ChannelId,
pub version_on_b: Version,
pub proof_chan_end_on_b: MerkleProof,
pub proof_height_on_b: Height,
pub signer: String,

}

Message: ChannelOpenConfirm

The ChannelOpenConfirmmessage has B check

• that its ChannelEnd is in State::TryOpen
• that its (A, B) ConnectionEnd is in State::Open
• that A has committed to a ChannelEnd in State::Openwith data consistentwith B's state

B then sets its ChannelEnd state to State::Open. This concludes the handshake.

pub struct MsgChannelOpenConfirm {
pub port_id_on_b: PortId,
pub chan_id_on_b: ChannelId,
pub proof_chan_end_on_a: MerkleProof,
pub proof_height_on_a: Height,
pub signer: String,

}

Message: ChannelCloseInit

Both ChannelCloseInit and ChannelCloseConfirm form a handshake for closing an existing open
channel.

For ChannelCloseInit, A checks that the channel is not already in State::Closed and that the (A,
B) connection is in State::Open, then sets the channel to State::Closed.

pub struct MsgChannelCloseInit {
pub port_id_on_a: PortId,
pub chan_id_on_a: ChannelId,
pub signer: String,

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 44 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

}

Message: ChannelCloseConfirm

For ChannelCloseConfirm, B checks that the channel is not already in State::Closed and that the
(A, B) connection is in State::Open, and it verifies that A's state contains the channel in a form con-
sistentwith B's state butwith the state changed to State::Closed, and then sets its own channel to
State::Closed.

pub struct MsgChannelCloseConfirm {
pub port_id_on_b: PortId,
pub chan_id_on_b: ChannelId,
pub proof_chan_end_on_a: MerkleProof,
pub proof_height_on_a: Height,
pub signer: String,

}

Message: RecvPacket

The RecvPacketmessage delivers a packet along an existing (A, B) channel. Without loss of gener-
ality, messages are said to be sent from A to B, but since the channel is bidirectional, these are not
the same as the A and B in channel establishment.

When receiving a packet, B checks

• that the (A, B) channel is in State::Open
• that the packet's port and channel IDsmatch the channel's sender's port and channel IDs
• that the (A, B) connection is in State::Open
• that the packet has not timed out
• that the packet was committed to in A's state
• if the channel is ordered, that its sequence numbermatches B's recv sequence number
• if the channel is unordered, that it has not already been processed

B then increments its recv sequence number (for ordered channels) or marks the packet as pro-
cessed (for unordered channels).

pub struct MsgRecvPacket {
/// The packet to be received
pub packet: Packet,
/// Proof of packet commitment on the sending chain
pub proof_commitment_on_a: MerkleProof,
/// Height at which the commitment proof in this message were taken
pub proof_height_on_a: Height,

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 45 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

/// The signer of the message
pub signer: String,

}

pub struct Packet {
pub sequence: Sequence,
pub port_on_a: PortId,
pub chan_on_a: ChannelId,
pub port_on_b: PortId,
pub chan_on_b: ChannelId,
pub data: Vec<u8>,
pub timeout_height_on_b: TimeoutHeight,
pub timeout_timestamp_on_b: Timestamp,

}

Message: Acknowledgement

An Acknowledgementmessage tells A that B received a packet fromA at a particular time.

When receiving an acknowledgment, A checks

• that the (A, B) channel is in State::Open
• that the acknowledged packet's port and channel IDsmatch the channel's receiver's IDs
• that the (A, B) connection is in State::Open
• that A committed to the claimed received packet
• that the send of the acknowledgment of the packet is in B's state
• if the channel is ordered, that its sequence numbermatches A's ack sequence number

If the channel is ordered, A then increments its ack sequence number.

A then deletes the packet from its set of pending packets it has sent but not acknowledged.

pub struct MsgAcknowledgement {
pub packet: Packet,
pub acknowledgement: Vec<u8>,
/// Proof of packet acknowledgement on the receiving chain
pub proof_acked_on_b: MerkleProof,
/// Height at which the commitment proof in this message were taken
pub proof_height_on_b: Height,
pub signer: String,

}

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 46 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

Message: Timeout

A Timeoutmessage tells A that a packet it sent to B has not been received by the packet's expiration
time.

When receiving a timeout, A checks

• that the (A, B) channel is in State::Open
• that the packet's port and channel IDsmatch the channel's receiver's IDs
• that the (A, B) connection exists
• that B's latest state has a later time than the packet's expiry
• that A committed to the claimed packet
• if the channel is ordered, that B's recv sequence number does notmatch the packet (see
Finding 3.11. ↗)

• if the channel is unordered, that the packet receipt is absent from B's state

A then deletes the packet from its set of pending packets it has sent but not acknowledged, and if
the channel is ordered, closes it.

pub struct MsgTimeout {
pub packet: Packet,
pub next_seq_recv_on_b: Sequence,
pub proof_unreceived_on_b: MerkleProof,
pub proof_height_on_b: Height,
pub signer: String,

}

Message: Unknown

Messages that are not one of the above types are encapsulated into the Unknown variant, and such
messages are rejected.

pub enum IbcRelay {
// ...
Unknown(pbjson_types::Any),

}

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 47 of 48

DR
AF
T

Penumbra IBC Blockchain Security Assessment April 25, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to themainnet.

During our assessment on the scoped Penumbra IBC crates, we discovered 11 findings. No critical
issues were found. Two findings were of high impact, four were of medium impact, one was of low
impact, and the remaining findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Rev. 081363e2 Page 48 of 48

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Penumbra IBC
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	False negative for Timeouts on ordered channels
	Missing expiration check in UpgradeClient
	Upgrade-path length hardcoded to two
	Handshake state machines too permissive when processing Acks
	Zero out custom fields on client update
	Chain ID parsing incorrectly accepts newlines
	Missing check in ClientState::new
	Frozen client height mismatches with ibc-go spec
	Revision number not in state
	Trailing hex digits in chain IDs may be treated as revisions
	Mismatch in upper bound for TrustThreshold

	Discussion
	Impact of provable store divergences not currently used in proofs
	ICS specification inconsistencies

	Threat Model
	Assessment Results
	Disclaimer

